Design of Membrane-Separation Systems

Recently, membrane processes have gained a growing level of applicability in industry. Membrane systems have several advantages. In addition to their high selectivity (which can provide concentrations as low as parts per billion), low energy consumption, and moderate cost, they are compact and modular. Therefore, membrane units can be readily added to existing plants. This chapter provides an overview of the use of membrane separation systems for environmental applications. First, pressure-driven membrane technologies will be categorized. Then, modeling and design techniques will be discussed for reverse osmosis as a representative membrane technology. Next, thermal membrane distillation will be described as an example of emerging membrane technologies.

[1]  Ioannis K. Kookos,et al.  A targeting approach to the synthesis of membrane networks for gas separations , 2002 .

[2]  Mahmoud M. El-Halwagi,et al.  Optimal design of thermal membrane distillation systems with heat integration with process plants , 2015 .

[3]  M. El‐Halwagi,et al.  Process Design and Integration of Shale Gas to Methanol , 2014 .

[4]  Eva Sorensen,et al.  A general approach to modelling membrane modules , 2003 .

[5]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[6]  Franco Evangelista,et al.  Improved graphical-analytical method for the design of reverse-osmosis plants , 1986 .

[7]  Mahendra R. Doshi,et al.  Hollow fiber reverse osmosis: experiments and analysis of radial flow systems , 1975 .

[8]  R. Tan,et al.  A Superstructure Optimization Approach for Membrane Separation-Based Water Regeneration Network Synthesis with Detailed Nonlinear Mechanistic Reverse Osmosis Model , 2011 .

[9]  Eva Sorensen,et al.  The optimal design of membrane systems , 2003 .

[10]  Ignacio E. Grossmann,et al.  A structural optimization approach in process synthesis. II: Heat recovery networks , 1983 .

[11]  J. Hermans,et al.  Physical aspects governing the design of hollow fiber modules , 1978 .

[12]  Ali Elkamel,et al.  Optimal design of reverse-osmosis networks for wastewater treatment , 2008 .

[13]  Mahmoud M. El-Halwagi,et al.  An integrated approach for incorporating thermal membrane distillation in treating water in heavy oil recovery using SAGD , 2015 .

[14]  Mahmoud M. El-Halwagi,et al.  Optimization of multi-effect distillation with brine treatment via membrane distillation and process heat integration , 2017 .

[15]  William N. Gill,et al.  ANALYSIS AND DESIGN OF HOLLOW FIBER REVERSE OSMOSIS SYSTEMS , 1982 .

[16]  Mahmoud M. El-Halwagi,et al.  Analysis and Simulation of Hollow-Fiber Reverse-Osmosis Modules , 1996 .

[17]  Yang-Dong Hu,et al.  Optimum design of reverse osmosis system under different feed concentration and product specification , 2007 .

[18]  Ludovic F. Dumée,et al.  Advances in Membrane Distillation for Water Desalination and Purification Applications , 2013 .

[19]  Joon Ha Kim,et al.  Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network , 2009 .

[20]  Fadwa T. Eljack,et al.  Integration of Energy and Wastewater Treatment Alternatives with Process Facilities To Manage Industrial Flares during Normal and Abnormal Operations: Multiobjective Extendible Optimization Framework , 2016 .

[21]  Lloyd P. M. Johnston,et al.  Optimal design of reverse osmosis module networks , 2000 .

[22]  Mahmoud M. El-Halwagi,et al.  Optimal design of pervaporation systems for waste reduction , 1993 .

[23]  Mahmoud M. El-Halwagi,et al.  Optimal design and scheduling of flexible reverse osmosis networks , 1997 .

[24]  Mahmoud M. El-Halwagi,et al.  Synthesis of reverse‐osmosis networks for waste reduction , 1992 .

[25]  M. Khayet,et al.  Experimental and theoretical investigations on water desalination using direct contact membrane distillation , 2017 .

[26]  Anthony G. Fane,et al.  Heat and mass transfer in membrane distillation , 1987 .

[27]  Mahmoud M. El-Halwagi Optimal Design of Membrane-Hybrid Systems for Waste Reduction , 1993 .

[28]  Sharad K. Gupta Design and analysis of a radial-flow hollow-fiber reverse-osmosis system , 1987 .

[29]  Lee F. Comb Going forward with reverse osmosis , 1994 .

[30]  Mahmoud M. El-Halwagi,et al.  Synthesis of optimal thermal membrane distillation networks , 2015 .

[31]  Mahendra R. Doshi,et al.  RADIAL FLOW HOLLOW FIBERREVERSE OSMOSIS: EXPERIMENTS AND THEORY , 1979 .

[32]  E. Drioli,et al.  Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation , 2008 .

[33]  Haruhiko Ohya,et al.  An analysis of reverse osmotic characteristics of B-9 hollow fiber module , 1977 .

[34]  Mahmoud M. El-Halwagi,et al.  Integration of Thermal Membrane Distillation Networks with Processing Facilities , 2014 .

[36]  Takeshi Matsuura,et al.  Synthetic Membranes and Membrane Separation Processes , 1993 .

[37]  Anthony G. Fane,et al.  Direct contact membrane distillation mechanism for high concentration NaCl solutions , 2006 .

[38]  François Maréchal,et al.  Combined mass and energy integration in process design at the example of membrane-based gas separation systems , 2010, Comput. Chem. Eng..

[39]  William N. Gill,et al.  An experimental study of the complete-mixing model for radial flow hollow fiber reverse osmosis systems , 1984 .

[40]  Russell F Dunn,et al.  Synthesis of Hybrid Gas Permeation Membrane/Condensation Systems for Pollution Prevention. , 1998, Journal of the Air & Waste Management Association.