Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology

Diatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an “atypical diatom” displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well‐known physiology, alongside the steady increase in genome‐enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms. We here present a brief overview of how over the last 25 years P. tricornutum has contributed to the unveiling of fundamental aspects of diatom biology, while also emerging as a new tool for algal process engineering and synthetic biology.

[1]  Karen Beeri,et al.  Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering , 2023, ACS synthetic biology.

[2]  Nicole Poulsen,et al.  Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation , 2023, Journal of phycology.

[3]  Bogumil J. Karas,et al.  Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome , 2023, bioRxiv.

[4]  M. Montresor,et al.  The pennate diatom Pseudo‐nitzschia multistriata as a model for diatom life cycles, from the laboratory to the sea , 2023, Journal of phycology.

[5]  J. Schmutz,et al.  The diatom Fragilariopsis cylindrus: A model alga to understand cold‐adapted life , 2023, Journal of phycology.

[6]  A. Falciatore,et al.  Diatom phytochromes integrate the entire visible light spectra for photosensing in marine environments , 2023, bioRxiv.

[7]  C. Bowler,et al.  Whole-genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom Chaetoceros , 2022, PLoS biology.

[8]  A. Falciatore,et al.  Rhythms and Clocks in Marine Organisms. , 2022, Annual review of marine science.

[9]  Alaguraj Veluchamy,et al.  PhaeoEpiView: an epigenome browser of the newly assembled genome of the model diatom Phaeodactylum tricornutum , 2022, bioRxiv.

[10]  Stephen J. Reaume,et al.  Phosphate-regulated expression of the SARS-CoV-2 receptor-binding domain in the diatom Phaeodactylum tricornutum for pandemic diagnostics , 2022, Scientific Reports.

[11]  Bogumil J. Karas,et al.  Towards synthetic diatoms: The Phaeodactylum tricornutum Pt-syn 1.0 project , 2022, Current Opinion in Green and Sustainable Chemistry.

[12]  S. Boussiba,et al.  Multiplexed Genome Editing via an RNA Polymerase II Promoter-Driven sgRNA Array in the Diatom Phaeodactylum tricornutum: Insights Into the Role of StLDP , 2022, Frontiers in Plant Science.

[13]  P. Kroth,et al.  Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum. , 2021, The Plant journal : for cell and molecular biology.

[14]  S. Ben-Dor,et al.  Biochemical Characterization of a Novel Redox-Regulated Metacaspase in a Marine Diatom , 2021, Frontiers in Microbiology.

[15]  A. Falciatore,et al.  Biochemical and molecular properties of LHCX1, the essential regulator of dynamic photoprotection in diatoms. , 2021, Plant physiology.

[16]  Tom O. Delmont,et al.  Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms , 2021, Current Biology.

[17]  B. Curtis,et al.  Re-examination of two diatom reference genomes using long-read sequencing , 2021, BMC Genomics.

[18]  Daniel J. Giguere,et al.  Telomere-to-telomere genome assembly of Phaeodactylum tricornutum , 2021, bioRxiv.

[19]  M. Pernice,et al.  Characterisation of novel regulatory sequences compatible with modular assembly in the diatom Phaeodactylum tricornutum , 2021 .

[20]  C. Brownlee,et al.  A Novel Ca2+ Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen Metabolism in Marine Diatoms , 2020, Current Biology.

[21]  A. Genovesio,et al.  PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum , 2020, Frontiers in Plant Science.

[22]  Daniel J. Giguere,et al.  Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing , 2020, Scientific Reports.

[23]  K. Vandepoele,et al.  The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms , 2020, Nature Communications.

[24]  P. Ralph,et al.  Extrachromosomal genetic engineering of the marine diatom Phaeodactylum tricornutum enables the heterologous production of monoterpenoids. , 2020, ACS synthetic biology.

[25]  Tamara Matute,et al.  Universal loop assembly: open, efficient and cross-kingdom DNA fabrication , 2020, Synthetic biology.

[26]  Bogumil J. Karas,et al.  Rapid method for generating designer algal mitochondrial genomes , 2019, bioRxiv.

[27]  A. Falciatore,et al.  Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity[OPEN] , 2019, Plant Cell.

[28]  P. Falkowski,et al.  Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum , 2019, Nature Communications.

[29]  A. Falciatore,et al.  bHLH-PAS protein RITMO1 regulates diel biological rhythms in the marine diatom Phaeodactylum tricornutum , 2019, Proceedings of the National Academy of Sciences.

[30]  Julius Fredens,et al.  Total synthesis of Escherichia coli with a recoded genome , 2019, Nature.

[31]  Sarah R. Smith,et al.  Cross‐compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum , 2019, The New phytologist.

[32]  F. Daboussi,et al.  One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing , 2018, Nature Communications.

[33]  G. Lowe,et al.  Engineering the unicellular alga Phaeodactylum tricornutum for high‐value plant triterpenoid production , 2018, Plant biotechnology journal.

[34]  P. Kersey,et al.  Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms , 2018, Scientific Reports.

[35]  Alaguraj Veluchamy,et al.  A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum , 2017, The ISME Journal.

[36]  Sarah R. Smith,et al.  Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom[OPEN] , 2017, Plant Cell.

[37]  Bogumil J. Karas,et al.  Diatom centromeres suggest a mechanism for nuclear DNA acquisition , 2017, Proceedings of the National Academy of Sciences.

[38]  G. Schoehn,et al.  Plastid thylakoid architecture optimizes photosynthesis in diatoms , 2017, Nature Communications.

[39]  A. Allen,et al.  Refinement of the Diatom Episome Maintenance Sequence and Improvement of Conjugation-Based DNA Delivery Methods , 2016, Front. Bioeng. Biotechnol..

[40]  T. Mock,et al.  Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana , 2016, bioRxiv.

[41]  P. Winge,et al.  A CRISPR/Cas9 system adapted for gene editing in marine algae , 2016, Scientific Reports.

[42]  N. Baliga,et al.  Pan-transcriptomic analysis identifies coordinated and orthologous functional modules in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. , 2016, Marine genomics.

[43]  J. Poulain,et al.  Insights into global diatom distribution and diversity in the world’s ocean , 2016, Proceedings of the National Academy of Sciences.

[44]  Christian Rogers,et al.  Standards for plant synthetic biology: a common syntax for exchange of DNA parts. , 2015, The New phytologist.

[45]  P. Falkowski,et al.  Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms , 2015, Nature.

[46]  Ruben E. Valas,et al.  Designer diatom episomes delivered by bacterial conjugation , 2015, Nature Communications.

[47]  T. Mock,et al.  Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage , 2015, The Plant journal : for cell and molecular biology.

[48]  P. Falkowski,et al.  Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress , 2014, Proceedings of the National Academy of Sciences.

[49]  D. Voytas,et al.  Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology , 2014, Nature Communications.

[50]  Judy Qiu,et al.  Total Synthesis of a Functional Designer Eukaryotic Chromosome , 2014, Science.

[51]  C. Hutchison,et al.  Assembly of eukaryotic algal chromosomes in yeast , 2013, Journal of biological engineering.

[52]  Jaysheel D. Bhavsar,et al.  Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum , 2013, Nature Communications.

[53]  Wei-dong Yang,et al.  Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. , 2012, BioTechniques.

[54]  S. Rombauts,et al.  The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. , 2012, The Plant journal : for cell and molecular biology.

[55]  Sylvestre Marillonnet,et al.  Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system , 2012 .

[56]  A. Fernie,et al.  Evolution and metabolic significance of the urea cycle in photosynthetic diatoms , 2011, Nature.

[57]  B. Green,et al.  Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. , 2011, Gene.

[58]  A. Falciatore,et al.  An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light , 2010, Proceedings of the National Academy of Sciences.

[59]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[60]  P. Kroth,et al.  FIRST INDUCED PLASTID GENOME MUTATIONS IN AN ALGA WITH SECONDARY PLASTIDS: psbA MUTATIONS IN THE DIATOM PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) REVEAL CONSEQUENCES ON THE REGULATION OF PHOTOSYNTHESIS 1 , 2009, Journal of phycology.

[61]  A. Falciatore,et al.  Gene silencing in the marine diatom Phaeodactylum tricornutum , 2009, Nucleic acids research.

[62]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[63]  A. Fernie,et al.  Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation , 2008, Proceedings of the National Academy of Sciences.

[64]  A. Falciatore,et al.  Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. , 2007, Gene.

[65]  J. Grimwood,et al.  Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage , 2007, Molecular Genetics and Genomics.

[66]  Johannes Goll,et al.  The Diatom EST Database , 2004, Nucleic Acids Res..

[67]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[68]  D. Trombetta,et al.  In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. , 2001, FEMS microbiology letters.

[69]  A. Falciatore,et al.  Transformation of Nonselectable Reporter Genes in Marine Diatoms , 1999, Marine Biotechnology.

[70]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[71]  A. Grossman,et al.  Stable nuclear transformation of the diatomPhaeodactylum tricornutum , 1996, Molecular and General Genetics MGG.

[72]  E. Jarvis,et al.  GENETIC TRANSFORMATION OF THE DIATOMS CYCLOTELLA CRYPTICA AND NAVICULA SAPROPHILA , 1995 .

[73]  R. Lewin,et al.  Observations on Phaeodactylum tricornutum. , 1958, Journal of general microbiology.

[74]  D. Cushing,et al.  Electron microscope studies of diatoms. , 1954, Journal. Royal Microscopical Society.

[75]  The Molecular Life of Diatoms , 2022 .

[76]  BMC Bioinformatics BioMed Central Methodology article HECTAR: A method to predict subcellular targeting in heterokonts , 2008 .

[77]  H. A. Barker Photosynthesis in diatoms , 2004, Archiv für Mikrobiologie.

[78]  E. Neufeld,et al.  CARBOHYDRATE METABOLISM. , 1965, Annual review of biochemistry.

[79]  F. Kützing Synopsis Diatomearum, oder, Versuch einer systematischen Zusammenstellung der Diatomeen / , 1834 .