Fatigue of mineralized tissues: cortical bone and dentin.

Gaining a mechanistic understanding of the mechanical properties of mineralized tissues, such as dentin and cortical bone, is important from the perspective of developing a framework for predicting and preventing failure of teeth and whole bones, particularly with regard to understanding the effects of microstructural modifications from factors such as aging, disease, or medical treatments. Accordingly, considerable research efforts have been made to determine the specific mechanisms involved in the fatigue and fracture of mineralized tissues, and to discover how these mechanisms relate to features within the respective microstructures. This article seeks to review the progress that has been made specifically in the area of fatigue, focusing on the research that moves our understanding beyond simple fatigue life (S/N) concepts and instead addresses the separate mechanisms for microdamage initiation, crack propagation, and in the case of bone, repair and remodeling.

[1]  P Zioupos,et al.  The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. , 1996, Clinical biomechanics.

[2]  C Milgrom,et al.  Aging and matrix microdamage accumulation in human compact bone. , 1995, Bone.

[3]  F. O'Brien,et al.  An improved labelling technique for monitoring microcrack growth in compact bone. , 2002, Journal of biomechanics.

[4]  H. Takahashi,et al.  Effects of aging on tensile fatigue strength of bovine dentin. , 1997, Dental materials journal.

[5]  D B Burr,et al.  Bone, exercise, and stress fractures. , 1997, Exercise and sport sciences reviews.

[6]  W. Hayes,et al.  Fluorescence‐aided detection of microdamage in compact bone , 1998, Journal of anatomy.

[7]  D. Taylor.,et al.  Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone , 2003, Journal of anatomy.

[8]  M J Tyas,et al.  Cracked tooth syndrome. , 1990, Australian dental journal.

[9]  J. Lafferty,et al.  The Influence of Stress Frequency on the Fatigue Strength of Cortical Bone , 1979 .

[10]  C. Rimnac,et al.  Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth. , 2001, Journal of biomechanics.

[11]  S. Suresh Fatigue of materials , 1991 .

[12]  P. Paris A rational analytic theory of fatigue , 1961 .

[13]  T. C. Lee,et al.  Microcracks in compact bone: a three‐dimensional view , 2006, Journal of anatomy.

[14]  D. Taylor.,et al.  Visualisation of three‐dimensional microcracks in compact bone , 2000, Journal of anatomy.

[15]  W. Hayes,et al.  The fracture mechanics of fatigue crack propagation in compact bone. , 1976, Journal of biomedical materials research.

[16]  K. Meurman,et al.  Stress fracture in soldiers: a multifocal bone disorder. A comparative radiological and scintigraphic study. , 1980, Radiology.

[17]  A Staines,et al.  Bone adaptation to load: microdamage as a stimulus for bone remodelling , 2002, Journal of anatomy.

[18]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[19]  R. Martin,et al.  Is all cortical bone remodeling initiated by microdamage? , 2002, Bone.

[20]  D. Burr,et al.  A hypothetical mechanism for the stimulation of osteonal remodelling by fatigue damage. , 1982, Journal of biomechanics.

[21]  D. Eifler,et al.  Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. , 2003, Journal of biomechanics.

[22]  M. Markel,et al.  Degradation of bone structural properties by accumulation and coalescence of microcracks. , 2003, Bone.

[23]  R O Ritchie,et al.  On the origin of the toughness of mineralized tissue: microcracking or crack bridging? , 2004, Bone.

[24]  D. Vashishth,et al.  Fatigue of cortical bone under combined axial‐torsional loading , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[25]  R O Ritchie,et al.  Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin. , 2006, Journal of biomedical materials research. Part A.

[26]  D. Arola,et al.  Tubule orientation and the fatigue strength of human dentin. , 2006, Biomaterials.

[27]  D. Arola,et al.  Stress ratio contributes to fatigue crack growth in dentin. , 2005, Journal of biomedical materials research. Part A.

[28]  Beata Dejak,et al.  Finite element analysis of stresses in molars during clenching and mastication. , 2003, The Journal of prosthetic dentistry.

[29]  P J Prendergast,et al.  Prediction of bone adaptation using damage accumulation. , 1994, Journal of biomechanics.

[30]  D. Arola,et al.  The effects of tubule orientation on fatigue crack growth in dentin. , 2003, Journal of biomedical materials research. Part A.

[31]  R O Ritchie,et al.  Cyclic fatigue-crack propagation in sapphire in air and simulated physiological environments. , 2000, Journal of biomedical materials research.

[32]  Dwayne Arola,et al.  Fatigue and fracture of bovine dentin , 2002 .

[33]  J. Knott,et al.  Fundamentals of Fracture Mechanics , 2008 .

[34]  D P Fyhrie,et al.  Intracortical remodeling in adult rat long bones after fatigue loading. , 1998, Bone.

[35]  W. Bonfield,et al.  Fracture mechanics of bone--the effects of density, specimen thickness and crack velocity on longitudinal fracture. , 1984, Journal of biomechanics.

[36]  R. Thomson Physics of Fracture , 1983 .

[37]  R. Ritchie,et al.  Propagation of surface fatigue cracks in human cortical bone. , 2006, Journal of biomechanics.

[38]  R. Heaney,et al.  Is the paradigm shifting? , 2003, Bone.

[39]  D. Burr,et al.  Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. , 1990, Clinical orthopaedics and related research.

[40]  W. Bonfield,et al.  Orientation dependence of the fracture mechanics of cortical bone. , 1989, Journal of biomechanics.

[41]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[42]  W C Hayes,et al.  Compact bone fatigue damage--I. Residual strength and stiffness. , 1977, Journal of biomechanics.

[43]  S. Goldstein,et al.  Age-dependent microdamage removal following mechanically induced microdamage in trabecular bone in vivo. , 2007, Bone.

[44]  D. Arola,et al.  Age, dehydration and fatigue crack growth in dentin. , 2006, Biomaterials.

[45]  E. Radin,et al.  Bone remodeling in response to in vivo fatigue microdamage. , 1985, Journal of biomechanics.

[46]  J. Türp,et al.  The cracked tooth syndrome: an elusive diagnosis. , 1996, Journal of the American Dental Association.

[47]  P Zioupos,et al.  Tensile fatigue in bone: are cycles-, or time to failure, or both, important? , 2001, Journal of theoretical biology.

[48]  R. Young,et al.  Crack velocity and the fracture of bone. , 1978, Journal of biomechanics.

[49]  O. Verborgt,et al.  Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[50]  W C Hayes,et al.  Fatigue life of compact bone--I. Effects of stress amplitude, temperature and density. , 1976, Journal of biomechanics.

[51]  D. Taylor.,et al.  9.02 – Failure Processes in Hard and Soft Tissues , 2003 .

[52]  D P Fyhrie,et al.  Fatigue damage-fracture mechanics interaction in cortical bone. , 2002, Bone.

[53]  D B Burr,et al.  Increased intracortical remodeling following fatigue damage. , 1993, Bone.

[54]  Robert O. Ritchie,et al.  Invited Article , 2004 .

[55]  A. G. Evans,et al.  Crack propagation in ceramic materials under cyclic loading conditions , 1974, Metallurgical and Materials Transactions B.

[56]  T. Gunnlaugsson,et al.  Detecting microdamage in bone , 2003, Journal of anatomy.

[57]  N. Ruse,et al.  Fatigue crack propagation path across the dentinoenamel junction complex in human teeth. , 2003, Journal of biomedical materials research. Part A.

[58]  W C Hayes,et al.  Sequential labelling of microdamage in bone using chelating agents , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[59]  J. Iwamoto,et al.  Stress fractures in athletes: review of 196 cases , 2003, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[60]  D B Burr,et al.  Calculating the probability that microcracks initiate resorption spaces. , 1993, Journal of biomechanics.

[61]  Fergal J O'Brien,et al.  Microcrack accumulation at different intervals during fatigue testing of compact bone. , 2003, Journal of biomechanics.

[62]  David Taylor,et al.  The effect of bone microstructure on the initiation and growth of microcracks , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[63]  A Chamay,et al.  Mechanical influences in bone remodeling. Experimental research on Wolff's law. , 1972, Journal of biomechanics.

[64]  P Zioupos,et al.  Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. , 1996, Journal of biomechanics.

[65]  D R Carter,et al.  Cycle-dependent and time-dependent bone fracture with repeated loading. , 1983, Journal of biomechanical engineering.

[66]  R. Ritchie,et al.  On the in vitro Fatigue Behavior of Human Dentin: Effect of Mean Stress , 2004, Journal of dental research.

[67]  D A Nagel,et al.  Humeral hypertrophy in response to exercise. , 1977, The Journal of bone and joint surgery. American volume.

[68]  G. Marshall,et al.  The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. , 2003, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[69]  R O Ritchie,et al.  Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. , 2003, Biomaterials.

[70]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[71]  J Currey,et al.  'Osteons' in biomechanical literature. , 1982, Journal of biomechanics.

[72]  D. Taylor.,et al.  The fatigue strength of compact bone in torsion. , 2003, Journal of biomechanics.

[73]  W C Hayes,et al.  Fatigue life of compact bone--II. Effects of microstructure and density. , 1976, Journal of biomechanics.

[74]  F. G. Evans,et al.  Strength of human compact bone under repetitive loading. , 1957, Journal of applied physiology.

[75]  R. Ritchie,et al.  Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. , 2005, Biomaterials.

[76]  W C Hayes,et al.  Compact bone fatigue damage: a microscopic examination. , 1977, Clinical orthopaedics and related research.

[77]  R. Martin,et al.  Toward a unifying theory of bone remodeling. , 2000, Bone.

[78]  R O Ritchie,et al.  In vitro fatigue behavior of human dentin with implications for life prediction. , 2003, Journal of biomedical materials research. Part A.

[79]  D B Burr,et al.  Targeted and nontargeted remodeling. , 2002, Bone.

[80]  Olivier Verborgt,et al.  Spatial Distribution of Bax and Bcl‐2 in Osteocytes After Bone Fatigue: Complementary Roles in Bone Remodeling Regulation? , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[81]  R. J. Gray,et al.  Compressive fatique behaviour of bovine compact bone. , 1974, Journal of biomechanics.

[82]  S. Ellis Incomplete tooth fracture – proposal for a new definition , 2001, British Dental Journal.

[83]  R O Ritchie,et al.  Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. , 2005, Biomaterials.

[84]  D. Taylor.,et al.  Microcrack growth parameters for compact bone deduced from stiffness variations. , 1998, Journal of biomechanics.

[85]  W. Bonfield,et al.  Crack velocity dependence of longitudinal fracture in bone , 1980 .

[86]  S A Goldstein,et al.  A comparison of the fatigue behavior of human trabecular and cortical bone tissue. , 1992, Journal of biomechanics.

[87]  D R Carter,et al.  Bone creep-fatigue damage accumulation. , 1989, Journal of biomechanics.

[88]  David Taylor,et al.  Mechanisms of short crack growth at constant stress in bone. , 2006, Biomaterials.

[89]  D. Carter,et al.  Cyclic mechanical property degradation during fatigue loading of cortical bone. , 1996, Journal of biomechanics.

[90]  W. S. Brown,et al.  Thermal Fatigue in Teeth , 1972, Journal of dental research.

[91]  T. Norman,et al.  Microdamage of human cortical bone: incidence and morphology in long bones. , 1997, Bone.

[92]  J. Currey,et al.  Mechanical properties of vertebrate hard tissues , 1998, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[93]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[94]  M. Freeman,et al.  The fatigue properties of human cortical bone , 2006, Medical & biological engineering.

[95]  R O Ritchie,et al.  Mechanistic aspects of in vitro fatigue-crack growth in dentin. , 2005, Biomaterials.

[96]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .