Origins and Mechanisms of miRNAs and siRNAs

[1]  Petra Schwille,et al.  Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs , 2009, Cell.

[2]  H. Grosshans,et al.  Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins , 2009, The EMBO journal.

[3]  D. Moazed Small RNAs in transcriptional gene silencing and genome defence , 2009, Nature.

[4]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[5]  M. Zavolan,et al.  Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. , 2008, RNA.

[6]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[7]  C. Pikaard,et al.  Noncoding Transcription by RNA Polymerase Pol IVb/Pol V Mediates Transcriptional Silencing of Overlapping and Adjacent Genes , 2008, Cell.

[8]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[9]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[10]  G. Meister,et al.  Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells , 2008, Nucleic acids research.

[11]  E. Sontheimer,et al.  An inside job for siRNAs. , 2008, Molecular cell.

[12]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[13]  L. Smirnova,et al.  A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment , 2008, Nature Cell Biology.

[14]  Jack F Kirsch,et al.  Autoinhibition of human dicer by its internal helicase domain. , 2008, Journal of molecular biology.

[15]  A. F. Bochner,et al.  An Argonaute Transports siRNAs from the Cytoplasm to the Nucleus , 2008, Science.

[16]  L. Sieburth,et al.  Widespread Translational Inhibition by Plant miRNAs and siRNAs , 2008, Science.

[17]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[18]  C. Novina,et al.  MicroRNA-repressed mRNAs contain 40S but not 60S components , 2008, Proceedings of the National Academy of Sciences.

[19]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[20]  Hong Duan,et al.  The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution , 2008, Nature Structural &Molecular Biology.

[21]  E. Izaurralde,et al.  GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay , 2008, Nature Structural &Molecular Biology.

[22]  Jian Lu,et al.  The birth and death of microRNA genes in Drosophila , 2008, Nature Genetics.

[23]  Jennifer A. Doudna,et al.  In vitro reconstitution of the human RISC-loading complex , 2008, Proceedings of the National Academy of Sciences.

[24]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[25]  G. Meister,et al.  Proteomic and functional analysis of Argonaute‐containing mRNA–protein complexes in human cells , 2007, EMBO reports.

[26]  M. Hentze,et al.  A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain , 2007, Nature Structural &Molecular Biology.

[27]  I. MacRae,et al.  Structural determinants of RNA recognition and cleavage by Dicer , 2007, Nature Structural &Molecular Biology.

[28]  Takayuki Murata,et al.  MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F , 2007, Science.

[29]  Shigeyuki Yokoyama,et al.  Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. , 2007, Genes & development.

[30]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[31]  Phillip D. Zamore,et al.  Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1 , 2007, Cell.

[32]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[33]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[34]  M. Kiriakidou,et al.  An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses Translation , 2007, Cell.

[35]  A. Pasquinelli,et al.  MicroRNA silencing through RISC recruitment of eIF6 , 2007, Nature.

[36]  Matthias W. Hentze,et al.  Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation , 2007, Nature.

[37]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[38]  S. Grewal,et al.  Transcription and RNA interference in the formation of heterochromatin , 2007, Nature.

[39]  I. Henderson,et al.  Epigenetic inheritance in plants , 2007, Nature.

[40]  Isabelle Behm-Ansmant,et al.  P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing , 2007, Molecular and Cellular Biology.

[41]  John G Doench,et al.  Comparison of siRNA-induced off-target RNA and protein effects. , 2007, RNA.

[42]  Titia Sijen,et al.  Secondary siRNAs Result from Unprimed RNA Synthesis and Form a Distinct Class , 2007, Science.

[43]  Andrew Fire,et al.  Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans , 2007, Science.

[44]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[45]  R. Carthew,et al.  Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. , 2006, RNA.

[46]  J. Richter,et al.  Human let-7a miRNA blocks protein production on actively translating polyribosomes , 2006, Nature Structural &Molecular Biology.

[47]  Anthony K. L. Leung,et al.  Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules , 2006, Proceedings of the National Academy of Sciences.

[48]  Yang Yu,et al.  Evidence that microRNAs are associated with translating messenger RNAs in human cells , 2006, Nature Structural &Molecular Biology.

[49]  Pedro J. Batista,et al.  Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi , 2006, Cell.

[50]  P. Bork,et al.  mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. , 2006, Genes & development.

[51]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[52]  Marc Bühler,et al.  Tethering RITS to a Nascent Transcript Initiates RNAi- and Heterochromatin-Dependent Gene Silencing , 2006, Cell.

[53]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[54]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[55]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[57]  Angela N. Brooks,et al.  Structural Basis for Double-Stranded RNA Processing by Dicer , 2006, Science.

[58]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[59]  Z. Mourelatos,et al.  A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. , 2005, Genes & development.

[60]  T. Tuschl,et al.  Identification of Novel Argonaute-Associated Proteins , 2005, Current Biology.

[61]  M. Siomi,et al.  Slicer function of Drosophila Argonautes and its involvement in RISC formation. , 2005, Genes & development.

[62]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[64]  Xiaodong Wang,et al.  Argonaute2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation , 2005, Cell.

[65]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[66]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[67]  E. Chan,et al.  Disruption of GW bodies impairs mammalian RNA interference , 2005, Nature Cell Biology.

[68]  C. Bonilla,et al.  RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. , 2005, Genes & development.

[69]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[70]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[71]  Oliver H. Tam,et al.  Characterization of Dicer-deficient murine embryonic stem cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  T. Tuschl,et al.  Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. , 2005, Molecular cell.

[73]  Qinghua Liu,et al.  Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. , 2005, Genes & development.

[74]  R. Martienssen,et al.  RNA Polymerase II Is Required for RNAi-Dependent Heterochromatin Assembly , 2005, Science.

[75]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[76]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[77]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[78]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[79]  A. Reynolds,et al.  The contributions of dsRNA structure to Dicer specificity and efficiency. , 2005, RNA.

[80]  Adam M. Gustafson,et al.  microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants , 2005, Cell.

[81]  Elisa Izaurralde,et al.  Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. , 2005, RNA.

[82]  D. Baulcombe,et al.  RNA Polymerase IV Directs Silencing of Endogenous DNA , 2005, Science.

[83]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[84]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[85]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[86]  C. Pikaard,et al.  Plant Nuclear RNA Polymerase IV Mediates siRNA and DNA Methylation-Dependent Heterochromatin Formation , 2005, Cell.

[87]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[88]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[89]  Shridar Ganesan,et al.  Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. , 2005, Genes & development.

[90]  T. Rana,et al.  Specific and potent RNAi in the nucleus of human cells , 2005, Nature Structural &Molecular Biology.

[91]  T. Sugiyama,et al.  RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[92]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[93]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[94]  H. Goodman,et al.  Uridine Addition After MicroRNA-Directed Cleavage , 2004, Science.

[95]  Franck Vazquez,et al.  Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. , 2004, Molecular cell.

[96]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[97]  R. Martienssen,et al.  The role of RNA interference in heterochromatic silencing , 2004, Nature.

[98]  T. Tuschl,et al.  Mechanisms of gene silencing by double-stranded RNA , 2004, Nature.

[99]  C. Mello,et al.  Revealing the world of RNA interference , 2004, Nature.

[100]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[101]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[102]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[103]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[104]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[105]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[106]  P. Mantica,et al.  The Decay of , 2000 .

[107]  T. Hobman,et al.  GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. , 1999, Molecular biology of the cell.

[108]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[109]  W. J. Hadden,et al.  A Comparison of , 1971 .