Compiling Markov chain Monte Carlo algorithms for probabilistic modeling
暂无分享,去创建一个
J. Gregory Morrisett | Jean-Baptiste Tristan | Daniel Huang | Daniel Huang | J. G. Morrisett | Jean-Baptiste Tristan | Greg Morrisett
[1] Frank D. Wood,et al. A Compilation Target for Probabilistic Programming Languages , 2014, ICML.
[2] Joseph Tassarotti,et al. Augur: Data-Parallel Probabilistic Modeling , 2014, NIPS.
[3] Yura N. Perov,et al. Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.
[4] Richard E. Neapolitan,et al. Learning Bayesian networks , 2007, KDD '07.
[5] David Van Horn,et al. Running Probabilistic Programs Backwards , 2015, ESOP.
[6] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[7] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[8] Keith Bonawitz,et al. Composable probabilistic inference with BLAISE , 2008 .
[9] Frank D. Wood,et al. A New Approach to Probabilistic Programming Inference , 2014, AISTATS.
[10] Chung-Kil Hur,et al. R2: An Efficient MCMC Sampler for Probabilistic Programs , 2014, AAAI.
[11] Lei Li,et al. Swift: Compiled Inference for Probabilistic Programming Languages , 2016, IJCAI.
[12] Andrew McCallum,et al. FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs , 2009, NIPS.
[13] Timon Gehr,et al. PSI: Exact Symbolic Inference for Probabilistic Programs , 2016, CAV.
[14] Andrew D. Gordon,et al. Measure Transformer Semantics for Bayesian Machine Learning , 2011, ESOP.
[15] Dustin Tran,et al. Deep Probabilistic Programming , 2017, ICLR.
[16] Jacques Carette,et al. Probabilistic Inference by Program Transformation in Hakaru (System Description) , 2016, FLOPS.
[17] L. Dixon,et al. Automatic differentiation of algorithms , 2000 .
[18] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[19] J. Gregory Morrisett,et al. An Application of Computable Distributions to the Semantics of Probabilistic Programming Languages , 2016, ESOP.
[20] Ryan P. Adams,et al. Elliptical slice sampling , 2009, AISTATS.
[21] Claudio V. Russo,et al. Deriving Probability Density Functions from Probabilistic Functional Programs , 2017, Log. Methods Comput. Sci..
[22] Joshua B. Tenenbaum,et al. Church: a language for generative models , 2008, UAI.