ASTRONOMICAL OXYGEN ISOTOPIC EVIDENCE FOR SUPERNOVA ENRICHMENT OF THE SOLAR SYSTEM BIRTH ENVIRONMENT BY PROPAGATING STAR FORMATION

New infrared absorption measurements of oxygen isotope ratios in CO gas from individual young stellar objects confirm that the solar system is anomalously high in its [18O]/[17O] ratio compared with extrasolar oxygen in the Galaxy. We show that this difference in oxygen isotope ratios is best explained by ∼1% enrichment of the protosolar molecular cloud by ejecta from Type II supernovae from a cluster having of order a few hundred stars that predated the Sun by at least 10–20 Myr. The likely source of exogenous oxygen was the explosion of one or more B stars during a process of propagating star formation.

[1]  B. Elmegreen Triggered Star Formation , 2011, 1101.3112.

[2]  P. Hoppe,et al.  NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION , 2010 .

[3]  J. L. Bourlot,et al.  Sensitivity analyses of dense cloud chemical models , 2010, 1004.1902.

[4]  A. Davis,et al.  OXYGEN ISOTOPIC COMPOSITION OF THE SUN AND MEAN OXYGEN ISOTOPIC COMPOSITION OF THE PROTOSOLAR SILICATE DUST: EVIDENCE FROM REFRACTORY INCLUSIONS , 2010 .

[5]  Leiden University,et al.  Variations in Integrated Galactic Initial Mass Functions due to Sampling Method and Cluster Mass Function , 2010, 1001.2009.

[6]  E. Gaidos,et al.  ON THE OXYGEN ISOTOPIC COMPOSITION OF THE SOLAR SYSTEM , 2009, 0909.3589.

[7]  P. Kroupa,et al.  The relation between the most-massive star and its parental star cluster mass , 2009, 0909.1555.

[8]  Mark R. Morris,et al.  HIGH-PRECISION C17O, C18O, AND C16O MEASUREMENTS IN YOUNG STELLAR OBJECTS: ANALOGUES FOR CO SELF-SHIELDING IN THE EARLY SOLAR SYSTEM , 2009, 0906.1024.

[9]  L. Nittler On the Mass and Metallicity Distributions of the Parent AGB Stars of O-Rich Presolar Stardust Grains , 2009, Publications of the Astronomical Society of Australia.

[10]  P. Hennebelle,et al.  SUPERNOVA PROPAGATION AND CLOUD ENRICHMENT: A NEW MODEL FOR THE ORIGIN OF 60Fe IN THE EARLY SOLAR SYSTEM , 2009, 0904.1661.

[11]  J. Zahn,et al.  Stellar Nucleosynthesis: 50 years after B2FH , 2008 .

[12]  G. Davis,et al.  Galactic interstellar 18 O/{^17}O ratios - a radial gradient? , 2008, 0805.3399.

[13]  Geoffrey A. Blake,et al.  Spectroastrometric Imaging of Molecular Gas within Protoplanetary Disk Gaps , 2008, 0805.3314.

[14]  A. Meibom,et al.  The Origin of Short-lived Radionuclides and the Astrophysical Environment of Solar System Formation , 2008, 0805.0569.

[15]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[16]  J. Lattanzio,et al.  Stellar Models and Yields of Asymptotic Giant Branch Stars , 2007, Publications of the Astronomical Society of Australia.

[17]  A. Meibom,et al.  The Oxygen Isotopic Composition of the Sun as a Test of the Supernova Origin of 26Al and 41Ca , 2007 .

[18]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[19]  S. Itoh,et al.  Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.

[20]  P. Bievre,et al.  Preparation of Synthetic Isotope Mixtures for the calibration of carbon and oxygen isotope ratio measurements (in carbon dioxide) to the SI , 2007 .

[21]  S. Woosley,et al.  Nucleosynthesis and remnants in massive stars of solar metallicity , 2007, astro-ph/0702176.

[22]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[23]  L. Scott,et al.  Superbubbles, Wolf-Rayet stars, and the origin of galactic cosmic rays , 2006 .

[24]  Martin J. Duncan,et al.  Embedded star clusters and the formation of the Oort Cloud , 2006 .

[25]  C. Keller,et al.  Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and Their Isotopes , 2006, astro-ph/0606153.

[26]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[27]  M. A. Brewster,et al.  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[28]  H Germany,et al.  Oxygen isotopic ratios in galactic clouds along the line of sight towards Sagittarius B2 , 2005, astro-ph/0504174.

[29]  D. Vanbeveren Binaries, cluster dynamics and population studies of stars and stellar phenomena , 2004, astro-ph/0411230.

[30]  Hisayoshi Yurimoto,et al.  New extreme 16O-rich reservoir in the early solar system , 2003 .

[31]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[32]  C. Brenninkmeijer,et al.  A redetermination of absolute values for 17RVPDB-CO2 and 17RVSMOW. , 2003, Rapid communications in mass spectrometry : RCM.

[33]  C. Brenninkmeijer,et al.  On the 17O correction for CO2 mass spectrometric isotopic analysis. , 2003, Rapid communications in mass spectrometry : RCM.

[34]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[35]  D. Clayton A Presolar Galactic Merger Spawned the SiC-Grain Mainstream , 2003 .

[36]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[37]  A. Galy,et al.  Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance , 2002 .

[38]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[39]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[40]  De Bruijne,et al.  Structure and colour-magnitude diagrams of Scorpius OB2 based on kinematic modelling of Hipparcos data , 1999 .

[41]  Young,et al.  Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.

[42]  L. Nittler,et al.  The Galactic Evolution of Si, Ti, and O Isotopic Ratios , 1999 .

[43]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[44]  Russell,et al.  Oxygen reservoirs in the early solar nebula inferred from an allende CAI , 1998, Science.

[45]  A. Davis,et al.  A stellar origin for the short-lived nuclides in the early Solar System , 1998, Nature.

[46]  B. Elmegreen,et al.  A Universal Formation Mechanism for Open and Globular Clusters in Turbulent Gas , 1997 .

[47]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[48]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[49]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[50]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[51]  D. Leisawitz Physical Properties of the Molecular Clouds Found in a CO Survey of Regions Around 34 Open Clusters , 1989 .

[52]  J. Hayes,et al.  Isotopic analyses based on the mass spectrum of carbon dioxide. , 1985, Analytical chemistry.

[53]  R. Clayton,et al.  Two forsterite-bearing FUN inclusions in the Allende meteorite. [Fractionation and Unknown Nuclear effects , 1984 .

[54]  K. Olive,et al.  CHEMICAL EVOLUTION OF OB ASSOCIATIONS * , 1982 .

[55]  A. Penzias The isotopic abundances of interstellar oxygen. , 1981 .

[56]  R. Clayton,et al.  DISTRIBUTION OF THE PRE-SOLAR COMPONENT IN ALLENDE AND OTHER CARBONACEOUS CHONDRITES , 1977 .

[57]  P. Baertschi Absolute18O content of standard mean ocean water , 1976 .

[58]  L. Burderi,et al.  Interacting binaries : accretion, evolution, and outcomes : Cefalù, Sicily 4-10 July 2004 , 2005 .

[59]  P. Wannier Abundances in the Galactic Center , 1989 .

[60]  Mark R. Morris,et al.  The center of the galaxy , 1989 .

[61]  H. Craig Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide , 1957 .

[62]  accepted in ApJ Preprint typeset using L ATEX style emulateapj v. 04/21/05 THE SHAPE OF THE INITIAL CLUSTER MASS FUNCTION: WHAT IT TELLS US ABOUT THE LOCAL STAR FORMATION EFFICIENCY , 2022 .