Mechanical alloying and theoretical studies of MnAl(C) magnets

Abstract Mn55Al45, Mn55Al44C1, Mn52.2Al45.8C2 and Mn54.2Al43.8C2 were synthesized by the mechanical alloying method. It was the first time that a high purity τ phase up to 99% of weight percentage was obtained in Mn54.2Al43.8C2, which gave the highest saturation magnetization Ms = 570 kAm−1 ever reported by mechanical alloying up to date. The crystallite size of the τ phase of MnAl(C) alloy decreased with increasing carbon doping, varying from 79 to 159 nm. Additionally, the coercivity (Hc) was found to be inversely proportional to the crystallite size of τ phase. Effect of doping carbon and its position in the τ phase of MnAl(C) alloy were also investigated for the first time by first-principle calculations. It was found that by inserting carbon at the interstitial site in the tetragonal structure, a strong stabilization effect and an expansion of unit cell were observed, which are in good agreement with the experimental results. Moreover, our results indicate that carbon doping reduces the magnetic moment of Mn.

[1]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[2]  Paolo Giannozzi,et al.  Notes on pseudopotential generation , 2002 .

[3]  I. Baker,et al.  A comparison of τ-MnAl particulates produced via different routes , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[5]  Steven R Schmid Kalpakjian,et al.  Manufacturing Engineering and Technology , 1991 .

[6]  A. Bollero,et al.  Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles , 2017 .

[7]  R. Street,et al.  MnAl and MnAlC Permanent Magnets Produced by Mechanical Alloying , 1995 .

[8]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Michael J. Lucis,et al.  Phase Transitions in Mechanically Milled Mn-Al-C Permanent Magnets , 2014 .

[10]  R. Ramanujan,et al.  Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements , 2012, Journal of Materials Science.

[11]  D. Xue,et al.  Effects of grain size distribution on coercivity and permeability of ferromagnets , 2008 .

[12]  A. E. Ermakov,et al.  Magnetic anisotropy of MnAl and MnAlC permanent magnet materials , 1986 .

[13]  F. Pfeifer,et al.  Soft magnetic Ni-Fe and Co-Fe alloys - some physical and metallurgical aspects , 1980 .

[14]  H. Kono,et al.  On the Ferromagnetic Phase in Manganese-Aluminum System , 1958 .

[15]  C. T. Lee,et al.  Phase and lattice parameter relationships in rapidly solidified and heat-treated (Mn_0.53Al_0.47)_100−xC_x pseudo-binary alloys , 1992 .

[16]  Mustapha Sadki,et al.  The HighScore suite , 2014, Powder Diffraction.

[17]  V. Harris,et al.  Magnetic and structural properties of heat-treated high-moment mechanically alloyed MnAlC powders , 2014 .

[18]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[19]  I. Baker,et al.  Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials , 2007 .

[20]  D. L. Zhang,et al.  Processing of advanced materials using high-energy mechanical milling , 2004 .

[21]  A. Przybył,et al.  Magnetic properties of the non-oriented ε-phase in Mn–Al–C permanent magnet , 1999 .

[22]  G. Herzer Soft magnetic nanocrystalline materials , 1995 .

[23]  E. Wachtel,et al.  Aufbau und magnetische Eigenschaften der Aluminium-Mangan-Legierungen mit mehr als 25 At.-%Mn , 1960 .

[24]  M. Hoffmann,et al.  Sintering and grain growth in SrTiO3: impact of defects on kinetics , 2016 .

[25]  J. Coey Permanent magnets: Plugging the gap , 2012 .

[26]  Y. Kageyama,et al.  Magnetic properties of mechanically alloyed Mn-Al-C powders , 2011 .

[27]  J. Eckert,et al.  Glass-forming range in mechanically alloyed Ni-Zr and the influence of the milling intensity , 1988 .

[28]  T. Saito Magnetic properties of Mn–Al system alloys produced by mechanical alloying , 2003 .

[29]  Konstantin P. Skokov,et al.  Microstructure and magnetic properties of Mn–Al–C alloy powders prepared by ball milling , 2015 .

[30]  A. Mcalister,et al.  The (Al−Mn) Aluminum-Manganese system , 1987 .

[31]  A. Mager,et al.  ber den Einflu der Korngre auf die Koerzitivkraft , 1952 .

[32]  Yingchang Yang,et al.  Neutron diffraction study of hard magnetic alloy MnAlC , 1984 .

[33]  P. Kuo,et al.  Influence of carbon on the phase transformation kinetics and magnetic properties of MnAl alloys , 1994 .

[34]  Kenji Suzuki,et al.  Ferromagnetic α-Mn-type MnAl alloys produced by mechanical alloying , 1995 .

[35]  I. Baker,et al.  Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl , 2014 .

[36]  Jean-François Bardeau,et al.  Insights into the Mechanism Related to the Phase Transition from γ-Fe2O3 to α-Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiation , 2012 .

[37]  D. Többens,et al.  τ-MnAl with high coercivity and saturation magnetization , 2014 .

[38]  N. Kato,et al.  Magnetic properties of Mn-Al-C permanent magnet alloys , 1977 .

[39]  J. M. D. Coey,et al.  Magnetic anisotropy — How much is enough for a permanent magnet? , 2016 .

[40]  S. Gialanella,et al.  Microstructural Characterisation of Amorphous and Nanocrystalline Structures Through Diffraction Methods , 2000 .

[41]  O. Isnard,et al.  Structural, electronic and magnetic properties of the Mn 50 Al 46 Ni 4 alloy , 2016 .

[42]  K. Gunnarsson,et al.  Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets , 2016 .

[43]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[44]  H. Okumura,et al.  Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets , 1995 .

[45]  N. Thadhani,et al.  Effects of Processing and Powder Size on Microstructure and Reactivity in Arrested Reactive Milled Al + Ni , 2011 .

[46]  P. Švec,et al.  Phase analysis and structure of rapidly quenched Al-Mn systems , 2017 .

[47]  A. Bollero,et al.  Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders , 2017 .

[48]  A. Sakuma Electronic Structure and Magnetocrystalline Anisotropy Energy of MnAl , 1994 .

[49]  A. E. Ermakov,et al.  Neutron diffraction and magnetic investigations of Ga substituted MnAl permanent magnet materials , 1988 .

[50]  G. Herzer,et al.  Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets , 1990, International Conference on Magnetics.

[51]  A. Koch,et al.  New Material for Permanent Magnets on a Base of Mn and Al , 1960 .

[52]  T. G. Woodcock,et al.  Magnetization reversal processes in hot-extruded τ-MnAl-C , 2017 .

[53]  W. Choo,et al.  On the Position of Carbon Atom in the τ-Phase of Carbon-Doped Mn-Al Permanent Magnets , 1993 .

[54]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.