The luminosity function and the rate of Swift's Gamma Ray Bursts

We invert directly the redshift-luminosity distribution of observed long Swift gamma-ray bursts (GRBs) to obtain their rate and luminosity function. Our best-fitting rate is described by a broken power law that rises like (1 + 2) 2.1+0.5 -0.6 for 0 3. The local rate is ρ 0 ≃ 1.3 +0.6 -0.7 (Gpc -3 yr -1 ). The luminosity function is well described by a broken power law with a break at L* ≃ 10 52.5±0.2 (erg s -1 ) and with indices α = 0.2 +0.2 -0.1 and β = 1.4 +0.3 -0.6 . The recently detected GRB 090423, with z ≈ 8, fits nicely into the model's prediction, verifying that we are allowed to extend our results to high redshifts. While the GRB rate may follow the star formation rate (SFR) for z < 3, the high-redshift slope is shallower than the steep decline in the SFR for 4 < z. However, we cannot rule out a GRB rate that follows one of the recent SFR models.

[1]  J. Peacock Two-dimensional goodness-of-fit testing in astronomy , 1983 .

[2]  T. Piran,et al.  A Simple Model for Neutrino Cooling of the Large Magellanic Cloud Supernova , 1987, Science.

[3]  G. Fasano,et al.  A multidimensional version of the Kolmogorov–Smirnov test , 1987 .

[4]  T. Piran The implications of the Compton (GRO) observations for cosmological gamma-ray bursts , 1992 .

[5]  B. Paczyński,et al.  On the cosmological origin of gamma-ray bursts , 1992 .

[6]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[7]  C. Kouveliotou,et al.  The intrinsic luminosity of γ-ray bursts and their host galaxies , 1993, Nature.

[8]  R. Wijers,et al.  The Width of the Gamma-ray Burst Luminosity Function , 1994, astro-ph/9408009.

[9]  Constraints on the gamma-ray burst luminosity function from Pioneer Venus Orbiter and BATSE observations , 1994, astro-ph/9411034.

[10]  The distribution of cosmological gamma-ray bursts , 1995, astro-ph/9502001.

[11]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[12]  T. Totani Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.

[13]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[14]  Joshua S. Bloom,et al.  Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1998 .

[15]  T. Totani Probing the Cosmic Star Formation History by the Brightness Distribution of Gamma-Ray Bursts , 1998, astro-ph/9805263.

[16]  B. Paczyński Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.

[17]  Inferring the Spatial and Energy Distribution of Gamma Ray Burst Sources. III. Anisotropic Models , 1997, astro-ph/9701111.

[18]  Luminosities and Space Densities of Gamma-Ray Bursts , 1999, astro-ph/9908206.

[19]  W. S. Paciesas,et al.  The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data , 2000 .

[20]  Luminosities and Space Densities of Short Gamma-Ray Bursts , 2001, astro-ph/0108459.

[21]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[22]  Luminosity function of gamma-ray bursts derived without benefit of redshifts , 2001, astro-ph/0101163.

[23]  Cristiano Porciani,et al.  On the Association of Gamma-Ray Bursts with Massive Stars: Implications for Number Counts and Lensing Statistics , 2001 .

[24]  D. Band A Gamma-Ray Burst Trigger Tool Kit , 2002, astro-ph/0205548.

[25]  Enrico Ramirez-Ruiz,et al.  Cosmological Aspects of Gamma-Ray Bursts: Luminosity Evolution and an Estimate of the Star Formation Rate at High Redshifts , 2001, astro-ph/0108200.

[26]  Baltimore,et al.  The potential of INTEGRAL for the detection of high redshift GRBs , 2004 .

[27]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[28]  G. Ghisellini,et al.  Formation Rate, Evolving Luminosity Function, Jet Structure, and Progenitors for Long Gamma-Ray Bursts , 2004, astro-ph/0401580.

[29]  Goro Sato,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004 .

[30]  T. Piran,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Luminosity and Redshift Distributions of Short-Duration , 2004 .

[31]  Enrico Ramirez-Ruiz,et al.  The redshift distribution of gamma-ray bursts revisited , 2005 .

[32]  Yue-xing Li Star formation near and far , 2005 .

[33]  S. B. Cenko,et al.  Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.

[34]  The Luminosity Function and Formation Rate History of GRBs , 2005, astro-ph/0504417.

[35]  Absolute Rate, Evolving Luminosity Function, and Evolving Jet Opening Angle Distribution for Long Gamma-Ray Bursts , 2005, astro-ph/0509276.

[36]  J. P. U. Fynbo,et al.  A Mean Redshift of 2.8 for Swift gamma - ray bursts , 2005 .

[37]  D. Guetta,et al.  The Luminosity and Angular Distributions of Long‐Duration Gamma‐Ray Bursts , 2005 .

[38]  D. Kocevski,et al.  Quantifying the Luminosity Evolution in Gamma-Ray Bursts , 2006, astro-ph/0601146.

[39]  S. B. Cenko,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[40]  L.Armus,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 PROBING THE COSMIC STAR FORMATION USING LONG GAMMA-RAY BURSTS: NEW CONSTRAINTS FROM THE SPITZER SPACE TELESCOPE ∗ , 2006 .

[41]  The gamma-ray burst luminosity function in the light of the Swift 2 year data , 2006, astro-ph/0612278.

[42]  Boulder,et al.  The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.

[43]  P. Natarajan,et al.  SN 2006aj and the Nature of Low-Luminosity Gamma-Ray Bursts , 2006, astro-ph/0603832.

[44]  David L. Band,et al.  Postlaunch Analysis of Swift’s Gamma-Ray Burst Detection Sensitivity , 2006, astro-ph/0602267.

[45]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[46]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[47]  Volker Bromm,et al.  High-redshift gamma-ray bursts from population III progenitors , 2006 .

[48]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[49]  Enhanced cosmological GRB rates and implications for cosmogenic neutrinos , 2006, astro-ph/0610481.

[50]  Charles D. Dermer,et al.  On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.

[51]  S. Piranomonte,et al.  Selection effects shaping the gamma ray burst redshift distributions , 2007, 0704.2189.

[52]  Massimo Della Valle,et al.  On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.

[53]  T. Piran,et al.  Do long duration gamma ray bursts follow star formation? , 2007, astro-ph/0701194.

[54]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2007 .

[55]  R. Chary,et al.  Spitzer Observations of Gamma-Ray Burst Host Galaxies: A Unique Window into High-Redshift Chemical Evolution and Star Formation , 2007, 0708.2440.

[56]  EXIST’s Gamma-Ray Burst Sensitivity , 2007, 0710.4602.

[57]  Charles D. Bailyn,et al.  Connecting Gamma-Ray Bursts and Galaxies: The Probability of Chance Coincidence , 2007, 0708.1510.

[58]  C. Guidorzi,et al.  Evidence for Luminosity Evolution of Long Gamma-ray Bursts in Swift Data , 2008, 0805.4104.

[60]  Andrew M. Hopkins,et al.  Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts , 2008, 0804.4008.

[61]  D. Lamb,et al.  Intrinsic properties of a complete sample of HETE-2 Gamma-ray bursts A measure of the GRB rate in the Local Universe , 2008, 0811.3304.

[62]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[63]  Neil Gehrels,et al.  GAMMA-RAY BURST: Sixth Huntsville Symposium , 2009 .

[64]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[65]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[66]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[67]  Nathaniel R. Butler,et al.  THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS , 2009, 0910.3341.

[68]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[69]  D. Coward Gamma-ray burst optical afterglow and redshift selection effects: the learning curve effect at work , 2008, 0811.3443.

[70]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[71]  D. A. Kann,et al.  LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.

[72]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[73]  R. O’Connell,et al.  Galaxy formation in the reionization epoch as hinted by wide field camera 3 observations of the hubble ultra deep field , 2009, 0910.0077.

[74]  B. Whitney,et al.  THE PRESENT-DAY STAR FORMATION RATE OF THE MILKY WAY DETERMINED FROM SPITZER-DETECTED YOUNG STELLAR OBJECTS , 2010, 1001.3672.

[75]  M. Franx,et al.  A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.