Estimation of change point in failure rate models

Abstract Estimation of the change point is considered for a failure rate function γ ( x ) which is an IDFR or a DIFR function. Kernel density estimators and emperical c.d.f. are utilized for estimating f ( x ) and F ( x ), respectively, which are then used to estimate γ ( x ) and its change point. Asymptotic properties of the change point estimator are considered. Simulation results are given for different γ ( x ) and kernel functions.

[1]  D. H. Park Testing whether failure rate changes its trend , 1988 .

[2]  Gerald J. Lieberman The status and impact of reliability methodology , 1969 .

[3]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[4]  J. Marron An Asymptotically Efficient Solution to the Bandwidth Problem of Kernel Density Estimation , 1985 .

[5]  H. Ramlau-Hansen Smoothing Counting Process Intensities by Means of Kernel Functions , 1983 .

[6]  Yi-Ching Yao Maximum likelihood estimation in hazard rate models with a change-point , 1986 .

[7]  James Stephen Marron,et al.  Asymptotically Optimal Bandwidth Selection for Kernel Density Estimators from Randomly Right-Censored Samples. , 1987 .

[8]  John H. K. Kao A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes , 1959 .

[9]  Hung T. Nguyen,et al.  Estimation in change-point hazard rate models , 1984 .

[10]  Prakasa Rao Nonparametric functional estimation , 1983 .

[11]  Joseph P. Romano On weak convergence and optimality of kernel density estimates of the mode , 1988 .

[12]  L. Thombs,et al.  A smooth nonparametric quantile estimator from right-censored data , 1988 .

[13]  S. N. Joshi,et al.  On Estimating Change Point in a Failure Rate , 1988 .

[14]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[15]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[16]  Ronald E. Glaser,et al.  Bathtub and Related Failure Rate Characterizations , 1980 .