Singleshot : a scalable Tucker tensor decomposition

This paper introduces a new approach for the scalable Tucker decomposition problem. Given a tensor X , the method proposed allows to infer the latent factors by processing one subtensor drawn from X at a time. The key principle of our approach is based on the recursive computations of gradient and on cyclic update of factors involving only one single step of gradient descent. We further improve the computational efficiency of this algorithm by proposing an inexact gradient version. These two algorithms are backed with theoretical guarantees of convergence and convergence rate under mild conditions. The scalabilty of the proposed approaches which can be easily extended to handle some common constraints encountered in tensor decomposition (e.g non-negativity), is proven via numerical experiments on both synthetic and real data sets.

[1]  George Karypis,et al.  Accelerating the Tucker Decomposition with Compressed Sparse Tensors , 2017, Euro-Par.

[2]  Andrzej Cichocki,et al.  Decomposition of Big Tensors With Low Multilinear Rank , 2014, ArXiv.

[3]  Stephen Becker,et al.  Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch , 2018, NeurIPS.

[4]  Jimeng Sun,et al.  MultiVis: Content-Based Social Network Exploration through Multi-way Visual Analysis , 2009, SDM.

[5]  Christos Faloutsos,et al.  S-HOT: Scalable High-Order Tucker Decomposition , 2017, WSDM.

[6]  Tamara G. Kolda,et al.  Parallel Tensor Compression for Large-Scale Scientific Data , 2015, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[7]  Tamara G. Kolda,et al.  Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[8]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[9]  Lee Sael,et al.  Scalable Tucker Factorization for Sparse Tensors - Algorithms and Discoveries , 2017, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[10]  Dongjin Choi,et al.  SNeCT: Scalable network constrained Tucker decomposition for integrative multi-platform data analysis , 2017, ArXiv.

[11]  Pauli Miettinen,et al.  Walk 'n' Merge: A Scalable Algorithm for Boolean Tensor Factorization , 2013, 2013 IEEE 13th International Conference on Data Mining.

[12]  Jaehyung Lee,et al.  Fast Tucker Factorization for Large-Scale Tensor Completion , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[13]  Andrzej Cichocki,et al.  Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness , 2014, IEEE Transactions on Image Processing.

[14]  K. Selçuk Candan,et al.  M2TD: Multi-Task Tensor Decomposition for Sparse Ensemble Simulations , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[15]  Maja Pantic,et al.  TensorLy: Tensor Learning in Python , 2016, J. Mach. Learn. Res..

[16]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[17]  Yangyang Xu,et al.  On the convergence of higher-order orthogonal iteration , 2015 .

[18]  Charalampos E. Tsourakakis MACH: Fast Randomized Tensor Decompositions , 2009, SDM.

[19]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[20]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[21]  Yimin Wei,et al.  Randomized algorithms for the approximations of Tucker and the tensor train decompositions , 2018, Advances in Computational Mathematics.

[22]  Christos Faloutsos,et al.  PArallel RAndomly COMPressed Cubes ( PARACOMP ) : A Scalable Distributed Architecture for Big Tensor Decomposition , 2014 .

[23]  Christos Faloutsos,et al.  HaTen2: Billion-scale tensor decompositions , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[24]  U Kang,et al.  Fast and scalable method for distributed Boolean tensor factorization , 2019, The VLDB Journal.

[25]  Dan Alistarh,et al.  The Convergence of Sparsified Gradient Methods , 2018, NeurIPS.

[26]  Zenglin Xu,et al.  Scalable Nonparametric Multiway Data Analysis , 2015, AISTATS.

[27]  Jimeng Sun,et al.  SmallBlue: Social Network Analysis for Expertise Search and Collective Intelligence , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[28]  Petros Drineas,et al.  Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..

[29]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems , 2008, Comput. Intell. Neurosci..

[30]  Xiaoshan Li,et al.  Tucker Tensor Regression and Neuroimaging Analysis , 2018, Statistics in Biosciences.

[31]  Jimeng Sun,et al.  Sparse Hierarchical Tucker Factorization and Its Application to Healthcare , 2015, 2015 IEEE International Conference on Data Mining.

[32]  Carmeliza Navasca,et al.  Random Projections for Low Multilinear Rank Tensors , 2015, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data.

[33]  Brett W. Bader,et al.  The TOPHITS Model for Higher-Order Web Link Analysis∗ , 2006 .

[34]  Lee Sael,et al.  Fully Scalable Methods for Distributed Tensor Factorization , 2017, IEEE Transactions on Knowledge and Data Engineering.

[35]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[36]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[37]  Benoît Meister,et al.  Efficient and scalable computations with sparse tensors , 2012, 2012 IEEE Conference on High Performance Extreme Computing.

[38]  R. Cattell “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .

[39]  Bora Uçar,et al.  High Performance Parallel Algorithms for the Tucker Decomposition of Sparse Tensors , 2016, 2016 45th International Conference on Parallel Processing (ICPP).

[40]  A KonstanJoseph,et al.  The MovieLens Datasets , 2015 .

[41]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[42]  Zenglin Xu,et al.  Distributed Flexible Nonlinear Tensor Factorization , 2016, NIPS.

[43]  Tamara G. Kolda,et al.  TuckerMPI , 2019, ACM Trans. Math. Softw..

[44]  Michael W. Mahoney,et al.  A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .

[45]  Yogish Sabharwal,et al.  On Optimizing Distributed Tucker Decomposition for Sparse Tensors , 2018, ICS.

[46]  Zenglin Xu,et al.  DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays , 2016, AAAI.

[47]  Lee Sael,et al.  VEST: Very Sparse Tucker Factorization of Large-Scale Tensors , 2019, 2021 IEEE International Conference on Big Data and Smart Computing (BigComp).

[48]  Dongjin Choi,et al.  S 3 CMTF : Fast , Accurate , and Scalable Method for Sparse Coupled Matrix-Tensor Factorization , 2018 .

[49]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[50]  Liqing Zhang,et al.  Bayesian Sparse Tucker Models for Dimension Reduction and Tensor Completion , 2015, ArXiv.