A study of weakly interacting systems in localized representation, including the many-body effect

[1]  E. Tfirst,et al.  DECOMPOSITION OF THE TOTAL ENERGY AT THE HF-SCF LEVEL AND AT SEVERAL LEVELS OF CORRELATION. I. A STUDY OF THE INTERACTION IN CLUSTERS OF HE, NE AND AR ATOMS , 1996 .

[2]  J. Pipek,et al.  Application of the localized representation for studying interaction energies , 1996 .

[3]  K. Morokuma,et al.  The potential energy function for a ligand substitution reaction of square‐planar platinum (II) complex in water: The important role of three‐body effect , 1995 .

[4]  S. Xantheas,et al.  The Hamiltonian for a weakly interacting trimer of polyatomic monomers , 1995 .

[5]  A. van der Avoird,et al.  Symmetry‐adapted perturbation theory of nonadditive three‐body interactions in van der Waals molecules. I. General theory , 1995 .

[6]  K. Fink,et al.  Ab initio calculations of van der Waals interactions in one‐ and two‐dimensional infinite periodic systems , 1995 .

[7]  G. W. Robinson,et al.  Towards a new correction method for the basis set superposition error: Application to the ammonia dimer , 1995 .

[8]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[9]  M J Elrod,et al.  Many-body effects in intermolecular forces. , 1994, Chemical reviews.

[10]  F. Tao An accurate determination of three-body intermolecular forces in the helium trimer , 1994 .

[11]  C. Kozmutza,et al.  Correlation energies in the interaction energy of molecules. The water dimer , 1994 .

[12]  K. Morokuma,et al.  Potential energy surface for the ligand substitution reaction of the square-planar platinum(II) complex. Essential role of the repulsive three-body effect , 1994 .

[13]  James B. Anderson,et al.  The interaction potential of a symmetric helium trimer , 1994 .

[14]  E. Tfirst,et al.  Decomposition of the interaction correlation energy in terms of localized orbital contributions , 1994 .

[15]  Peter Pulay,et al.  Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer , 1993 .

[16]  C. E. Dykstra,et al.  Pairwise and many‐body contributions to interaction potentials in Hen clusters , 1993 .

[17]  M. Szczęśniak,et al.  Ab initio calculations of nonadditive effects , 1992 .

[18]  C. Kozmutza,et al.  Calculation of the dispersion interaction energy by using localized molecular orbitals , 1991 .

[19]  C. Kozmutza,et al.  Localized orbitals for the description of molecular interaction , 1990 .

[20]  M. Szczęśniak,et al.  Calculations of nonadditive effects by means of supermolecular Mo/ller–Plesset perturbation theory approach: Ar3 and Ar4 , 1990 .

[21]  C. Kozmutza,et al.  Application of the many‐body perturbation theory by using localized orbitals , 1983 .

[22]  Vladimír Kvasnička,et al.  Wigner's (2n + 1) rule in MBPT , 1980 .

[23]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[24]  Estela Blaisten-Barojas,et al.  Role of three‐body interactions in trimer binding , 1977 .

[25]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .