Resonances and bifurcations in systems with elliptical equipotentials
暂无分享,去创建一个
[1] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[2] Christos Efthymiopoulos,et al. Non-convergence of formal integrals of motion , 2003 .
[3] James Binney,et al. Galactic Dynamics: Second Edition , 2008 .
[4] J. Binney. Resonant excitation of motion perpendicular to galactic planes , 1981 .
[5] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[6] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[7] Hongsheng Zhao. The pendulum dilemma of fish orbits , 1999, astro-ph/9906244.
[8] H. Hanßmann,et al. A Degenerate Bifurcation In The Hénon-Heiles Family , 2001 .
[9] A. Giorgilli. Notes on exponential stability of Hamiltonian systems , 2003 .
[10] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[11] S. Kent,et al. Approximate third integrals in axisymmetric galaxies and the tilt of the velocity ellipsoid in the solar neighborhood , 1991 .
[12] S. Sridhar,et al. Adiabatic evolution and capture into resonance: vertical heating of a growing stellar disc , 1996 .
[13] M. Carollo,et al. CAN GALACTIC NUCLEI BE NON-AXISYMMETRIC? THE PARAMETER SPACE OF POWER-LAW DISCS , 1999, astro-ph/9902057.
[14] G. Contopoulos. Resonance Cases and Small Divisors in a Third Integral of Motion. I , 1963 .
[15] Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems , 1998 .
[16] Jan A. Sanders. Are higher order resonances really interesting? , 1977 .
[17] O. Gerhard,et al. Recovering galactic orbits by perturbation theory , 1991 .
[18] R. Scuflaire,et al. Stability of axial orbits in analytical galactic potentials , 1995 .
[19] R. V. D. Bosch,et al. Recovery of the internal orbital structure of galaxies , 2007, 0712.0309.
[20] D. Lynden-Bell,et al. Best approximate quadratic integrals in stellar dynamics , 1985 .
[21] J. Henrard. Periodic orbits emanating from a resonant equilibrium , 1970 .
[22] Giuseppe Pucacco,et al. Theory of Orbits , 1996 .
[23] T. Zeeuw. Elliptical galaxies with separable potentials , 1985 .
[24] F. G. Gustavson,et al. Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .
[25] S. Leiden,et al. Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.
[26] A. Giorgilli,et al. Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation , 2004 .
[27] Giuseppe Pucacco,et al. Quantitative predictions with detuned normal forms , 2008 .
[28] M. Schwarzschild,et al. On the orbit structure of the logarithmic potential , 1989 .
[29] Giuseppe Pucacco,et al. On the Orbit Structure of the Logarithmic Potential , 2007, 0707.1252.
[30] N. Evans,et al. The flattened isochrone , 1990 .
[31] S. Tremaine,et al. A map for eccentric orbits in non-axisymmetric potentials , 1997 .
[32] Relevance of the 1:1 resonance in galactic dynamics , 2011, 1110.0630.
[33] D. Merritt,et al. Stellar orbits in a triaxial galaxy. I - Orbits in the plane of rotation , 1983 .
[34] A. Elipe,et al. The Lissajous transformation II. Normalization , 1991 .
[35] S.Sridhar,et al. Stellar dynamics around black holes in galactic nuclei , 1998, astro-ph/9811304.
[36] G. Pucacco. Resonances and bifurcations in axisymmetric scale-free potentials , 2009, 0906.3138.
[37] Ferdinand Verhulst,et al. Symmetry and Resonance in Hamiltonian Systems , 2001, SIAM J. Appl. Math..