Resonances and bifurcations in systems with elliptical equipotentials

We present a general analysis of the orbit structure of 2D potentials with self-similar elliptical equipotentials by applying the method of Lie transform normalization. We study the most relevant resonances and related bifurcations. We find that the 1:1 resonance is associated only with the appearance of the loops and leads to the destabilization of either one or the other normal modes, depending on the ellipticity of equipotentials. Inclined orbits are never present and may appear only when the equipotentials are heavily deformed. The 1:2 resonance determines the appearance of bananas and antibanana orbits: the first family is stable and always appears at a lower energy than the second, which is unstable. The bifurcation sequence also produces the variations in the stability character of the major-axis orbit and is modified only by very large deformations of the equipotentials. Higher order resonances appear at intermediate or higher energies and can be described with good accuracy.

[1]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[2]  Christos Efthymiopoulos,et al.  Non-convergence of formal integrals of motion , 2003 .

[3]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[4]  J. Binney Resonant excitation of motion perpendicular to galactic planes , 1981 .

[5]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[6]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[7]  Hongsheng Zhao The pendulum dilemma of fish orbits , 1999, astro-ph/9906244.

[8]  H. Hanßmann,et al.  A Degenerate Bifurcation In The Hénon-Heiles Family , 2001 .

[9]  A. Giorgilli Notes on exponential stability of Hamiltonian systems , 2003 .

[10]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[11]  S. Kent,et al.  Approximate third integrals in axisymmetric galaxies and the tilt of the velocity ellipsoid in the solar neighborhood , 1991 .

[12]  S. Sridhar,et al.  Adiabatic evolution and capture into resonance: vertical heating of a growing stellar disc , 1996 .

[13]  M. Carollo,et al.  CAN GALACTIC NUCLEI BE NON-AXISYMMETRIC? THE PARAMETER SPACE OF POWER-LAW DISCS , 1999, astro-ph/9902057.

[14]  G. Contopoulos Resonance Cases and Small Divisors in a Third Integral of Motion. I , 1963 .

[15]  Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems , 1998 .

[16]  Jan A. Sanders Are higher order resonances really interesting? , 1977 .

[17]  O. Gerhard,et al.  Recovering galactic orbits by perturbation theory , 1991 .

[18]  R. Scuflaire,et al.  Stability of axial orbits in analytical galactic potentials , 1995 .

[19]  R. V. D. Bosch,et al.  Recovery of the internal orbital structure of galaxies , 2007, 0712.0309.

[20]  D. Lynden-Bell,et al.  Best approximate quadratic integrals in stellar dynamics , 1985 .

[21]  J. Henrard Periodic orbits emanating from a resonant equilibrium , 1970 .

[22]  Giuseppe Pucacco,et al.  Theory of Orbits , 1996 .

[23]  T. Zeeuw Elliptical galaxies with separable potentials , 1985 .

[24]  F. G. Gustavson,et al.  Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .

[25]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[26]  A. Giorgilli,et al.  Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation , 2004 .

[27]  Giuseppe Pucacco,et al.  Quantitative predictions with detuned normal forms , 2008 .

[28]  M. Schwarzschild,et al.  On the orbit structure of the logarithmic potential , 1989 .

[29]  Giuseppe Pucacco,et al.  On the Orbit Structure of the Logarithmic Potential , 2007, 0707.1252.

[30]  N. Evans,et al.  The flattened isochrone , 1990 .

[31]  S. Tremaine,et al.  A map for eccentric orbits in non-axisymmetric potentials , 1997 .

[32]  Relevance of the 1:1 resonance in galactic dynamics , 2011, 1110.0630.

[33]  D. Merritt,et al.  Stellar orbits in a triaxial galaxy. I - Orbits in the plane of rotation , 1983 .

[34]  A. Elipe,et al.  The Lissajous transformation II. Normalization , 1991 .

[35]  S.Sridhar,et al.  Stellar dynamics around black holes in galactic nuclei , 1998, astro-ph/9811304.

[36]  G. Pucacco Resonances and bifurcations in axisymmetric scale-free potentials , 2009, 0906.3138.

[37]  Ferdinand Verhulst,et al.  Symmetry and Resonance in Hamiltonian Systems , 2001, SIAM J. Appl. Math..