Electron ptychography of 2D materials to deep sub-ångström resolution

[1]  P. Nellist,et al.  Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution. , 2017, Ultramicroscopy.

[2]  Peng Wang,et al.  Electron ptychographic microscopy for three-dimensional imaging , 2017, Nature Communications.

[3]  A. Kirkland,et al.  Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals , 2017, Scientific Reports.

[4]  R. Bücker,et al.  Low-dose cryo electron ptychography via non-convex Bayesian optimization , 2017, Scientific Reports.

[5]  Qian Chen,et al.  Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. , 2016, Optics express.

[6]  George Barbastathis,et al.  Denoised Wigner distribution deconvolution via low-rank matrix completion. , 2016, Optics express.

[7]  Malcolm L. H. Green,et al.  Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures , 2016, Nature Communications.

[8]  J. Biskupek,et al.  Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV. , 2016, Physical review letters.

[9]  D. Muller,et al.  High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy , 2015, Microscopy and Microanalysis.

[10]  Ivan Lazić,et al.  Phase contrast STEM for thin samples: Integrated differential phase contrast. , 2016, Ultramicroscopy.

[11]  S D Findlay,et al.  Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. , 2015, Ultramicroscopy.

[12]  H. Sawada,et al.  Atomic-Resolution STEM Imaging of Graphene at Low Voltage of 30 kV with Resolution Enhancement by Using Large Convergence Angle. , 2015, Physical review letters.

[13]  S D Findlay,et al.  Modelling the inelastic scattering of fast electrons. , 2015, Ultramicroscopy.

[14]  Lewys Jones,et al.  Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. , 2015, Ultramicroscopy.

[15]  L. Kourkoutis,et al.  Periodic Artifact Reduction in Fourier Transforms of Full Field Atomic Resolution Images , 2015, Microscopy and Microanalysis.

[16]  Peng Li,et al.  Ptychographic inversion via Wigner distribution deconvolution: noise suppression and probe design. , 2014, Ultramicroscopy.

[17]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[18]  M. Campbell,et al.  Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300μm silicon sensor under high flux conditions , 2014 .

[19]  T. Ishikawa,et al.  High-resolution multislice x-ray ptychography of extended thick objects. , 2014, Physical review letters.

[20]  Leslie J. Allen,et al.  Deterministic electron ptychography at atomic resolution , 2014 .

[21]  Andreas Menzel,et al.  Reconstructing state mixtures from diffraction measurements , 2013, Nature.

[22]  D. Muller,et al.  Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope. , 2012, Ultramicroscopy.

[23]  J. Rodenburg,et al.  Ptychographic transmission microscopy in three dimensions using a multi-slice approach. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Jannik C. Meyer,et al.  Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. , 2012, Physical review letters.

[25]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[26]  K. Nugent,et al.  Atom-scale ptychographic electron diffractive imaging of boron nitride cones. , 2012, Physical review letters.

[27]  J. Rodenburg,et al.  Extended ptychography in the transmission electron microscope: possibilities and limitations. , 2011, Ultramicroscopy.

[28]  U Kaiser,et al.  Transmission electron microscopy at 20 kV for imaging and spectroscopy. , 2011, Ultramicroscopy.

[29]  Fucai Zhang,et al.  Superresolution imaging via ptychography. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[31]  J. Rodenburg,et al.  Wave-front phase retrieval in transmission electron microscopy via ptychography , 2010 .

[32]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[33]  H. Sawada,et al.  STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. , 2009, Journal of electron microscopy.

[34]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[35]  Ulrich Dahmen,et al.  Atomic-resolution imaging with a sub-50-pm electron probe. , 2009, Physical review letters.

[36]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[37]  Jannik C. Meyer,et al.  Imaging and dynamics of light atoms and molecules on graphene , 2008, Nature.

[38]  A. G. Cullis,et al.  Transmission microscopy without lenses for objects of unlimited size. , 2007, Ultramicroscopy.

[39]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[40]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[41]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[42]  John M. Rodenburg,et al.  Electron ptychography. I. Experimental demonstration beyond the conventional resolution limits , 1998 .

[43]  A. Kirfel,et al.  New analytical scattering‐factor functions for free atoms and ions , 1995 .

[44]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[45]  B. C. McCallum,et al.  Resolution beyond the 'information limit' in transmission electron microscopy , 1995, Nature.

[46]  John M. Rodenburg,et al.  Beyond the conventional information limit: the relevant coherence function , 1994 .

[47]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[48]  A. Rose,et al.  Vision: human and electronic , 1973 .

[49]  G. Smirnov,et al.  Possibilities and Limitations , 1970 .

[50]  W. Hoppe Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen , 1969 .

[51]  E. H. Linfoot,et al.  Spherical aberration and the information content of optical images , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  D. Gabor A New Microscopic Principle , 1948, Nature.

[53]  C. M. Sparrow On Spectroscopic Resolving Power , 1916 .

[54]  Abbe The Relation of Aperture and Power in the Microscope , 1882 .