FAST-Forward Protein Folding and Design: Development, Analysis, and Applications of the FAST Sampling Algorithm

[1]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[2]  Luis Pedro Coelho Jug: Software for Parallel Reproducible Computation in Python , 2017 .

[3]  Mohammad M. Sultan,et al.  Automated design of collective variables using supervised machine learning. , 2018, The Journal of chemical physics.

[4]  Alberto Perez,et al.  Accelerating molecular simulations of proteins using Bayesian inference on weak information , 2015, Proceedings of the National Academy of Sciences.

[5]  Frank Noé,et al.  Markov models of molecular kinetics: generation and validation. , 2011, The Journal of chemical physics.

[6]  Vijay S. Pande,et al.  Modelling Intrinsically Disordered Protein Dynamics as Networks of Transient Secondary Structure , 2018, bioRxiv.

[7]  Diwakar Shukla,et al.  Reinforcement Learning Based Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Landscapes. , 2017, The journal of physical chemistry. B.

[8]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[9]  V. Helms,et al.  Transient pockets on protein surfaces involved in protein-protein interaction. , 2007, Journal of medicinal chemistry.

[10]  R. L. Baldwin,et al.  N‐ and C‐capping preferences for all 20 amino acids in α‐helical peptides , 1995, Protein science : a publication of the Protein Society.

[11]  Gerhard Hummer,et al.  Native contacts determine protein folding mechanisms in atomistic simulations , 2013, Proceedings of the National Academy of Sciences.

[12]  Vincent A. Voelz,et al.  Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models. , 2017, Biophysical journal.

[13]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[14]  F. Noé,et al.  Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution. , 2013, The Journal of chemical physics.

[15]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[16]  Toni Giorgino,et al.  Identification of slow molecular order parameters for Markov model construction. , 2013, The Journal of chemical physics.

[17]  Michael R. Shirts,et al.  Mathematical analysis of coupled parallel simulations. , 2001, Physical review letters.

[18]  Benjamin Trendelkamp-Schroer,et al.  Efficient estimation of rare-event kinetics , 2014, 1409.6439.

[19]  Maxwell I. Zimmerman,et al.  Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators , 2017, PloS one.

[20]  Benjamin A. Shoemaker,et al.  Exploring structures in protein folding funnels with free energy functionals: the transition state ensemble. , 1999, Journal of molecular biology.

[21]  Fu Kit Sheong,et al.  An efficient Bayesian kinetic lumping algorithm to identify metastable conformational states via Gibbs sampling. , 2018, The Journal of chemical physics.

[22]  Wei Yang,et al.  Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems , 2008, Proceedings of the National Academy of Sciences.

[23]  D. Case,et al.  Exploring protein native states and large‐scale conformational changes with a modified generalized born model , 2004, Proteins.

[24]  Vijay S Pande,et al.  Identification of simple reaction coordinates from complex dynamics. , 2016, The Journal of chemical physics.

[25]  Vincent A Voelz,et al.  Surprisal Metrics for Quantifying Perturbed Conformational Dynamics in Markov State Models. , 2014, Journal of chemical theory and computation.

[26]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[27]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[28]  Huan-Xiang Zhou,et al.  Molecular structure of RADA16-I designer self-assembling peptide nanofibers. , 2013, ACS nano.

[29]  Michael Dellnitz,et al.  Computation of Essential Molecular Dynamics by Subdivision Techniques , 1996, Computational Molecular Dynamics.

[30]  K. Lindorff-Larsen,et al.  How robust are protein folding simulations with respect to force field parameterization? , 2011, Biophysical journal.

[31]  F. Noé,et al.  Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling. , 2016, Journal of chemical theory and computation.

[32]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[33]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[34]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[35]  J. Onuchic,et al.  Protein folding funnels: a kinetic approach to the sequence-structure relationship. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Marqusee,et al.  Stepwise protein folding at near amino acid resolution by hydrogen exchange and mass spectrometry , 2013, Proceedings of the National Academy of Sciences.

[37]  Diwakar Shukla,et al.  To milliseconds and beyond: challenges in the simulation of protein folding. , 2013, Current opinion in structural biology.

[38]  Gregory R Bowman,et al.  Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. , 2018, Journal of chemical theory and computation.

[39]  J. Frère,et al.  TEM-1 beta-lactamase folds in a nonhierarchical manner with transient non-native interactions involving the C-terminal region. , 2008, Biochemistry.

[40]  F. Noé,et al.  Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules. , 2013, The Journal of chemical physics.

[41]  Xuhui Huang,et al.  Using generalized ensemble simulations and Markov state models to identify conformational states. , 2009, Methods.

[42]  Vijay S. Pande,et al.  Decision functions from supervised machine learning algorithms as collective variables for accelerating molecular simulations , 2018, ArXiv.

[43]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[44]  C. Peter,et al.  Using Dimensionality Reduction to Systematically Expand Conformational Sampling of Intrinsically Disordered Peptides. , 2016, Journal of chemical theory and computation.

[45]  Gregory R Bowman,et al.  Cooperative Changes in Solvent Exposure Identify Cryptic Pockets, Switches, and Allosteric Coupling. , 2019, Biophysical journal.

[46]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[47]  Kathryn M Hart,et al.  supplementary figures , 2018 .

[48]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[49]  R. Pain,et al.  β-Lactamases as models for protein-folding studies , 1998, Cellular and Molecular Life Sciences CMLS.

[50]  Vincent A. Voelz,et al.  Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking , 2016, Scientific Reports.

[51]  Huan‐Xiang Zhou,et al.  Protein Allostery and Conformational Dynamics. , 2016, Chemical reviews.

[52]  Frank Noé,et al.  Identification of kinetic order parameters for non-equilibrium dynamics. , 2018, The Journal of chemical physics.

[53]  Berk Hess,et al.  Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems , 1999 .

[54]  G. Hummer,et al.  Coarse master equations for peptide folding dynamics. , 2008, The journal of physical chemistry. B.

[55]  P. C. Anderson,et al.  Complete Coupled Binding-Folding Pathway of the Intrinsically Disordered Transcription Factor Protein Brinker Revealed by Molecular Dynamics Simulations and Markov State Modeling. , 2018, Biochemistry.

[56]  A. Caflisch,et al.  A molecular simulation protocol to avoid sampling redundancy and discover new states. , 2015, Biochimica et biophysica acta.

[57]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[58]  Cecilia Clementi,et al.  Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias , 2017, 1701.01665.

[59]  Frank Noé,et al.  PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. , 2015, Journal of chemical theory and computation.

[60]  John L. Klepeis,et al.  Anton, a special-purpose machine for molecular dynamics simulation , 2007, ISCA '07.

[61]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[62]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[63]  Xuhui Huang,et al.  Constructing Markov State Models to elucidate the functional conformational changes of complex biomolecules , 2018 .

[64]  Gregory R Bowman,et al.  FAST Conformational Searches by Balancing Exploration/Exploitation Trade-Offs. , 2015, Journal of chemical theory and computation.

[65]  Vijay S. Pande,et al.  Everything you wanted to know about Markov State Models but were afraid to ask. , 2010, Methods.

[66]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[67]  Mohammad M. Sultan,et al.  Transferable Neural Networks for Enhanced Sampling of Protein Dynamics. , 2018, Journal of chemical theory and computation.

[68]  V. Volchkov,et al.  The Ebola virus VP35 protein functions as a type I IFN antagonist. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. Hummer,et al.  Peptide dimerization-dissociation rates from replica exchange molecular dynamics. , 2017, The Journal of chemical physics.

[70]  Kathryn M Hart,et al.  Discovery of multiple hidden allosteric sites by combining Markov state models and experiments , 2015, Proceedings of the National Academy of Sciences.

[71]  L. Chong,et al.  Reaching biological timescales with all-atom molecular dynamics simulations. , 2010, Current opinion in pharmacology.

[72]  H. Klenk,et al.  The Ebola Virus VP35 Protein Inhibits Activation of Interferon Regulatory Factor 3 , 2003, Journal of Virology.

[73]  Michael R. Shirts,et al.  COMPUTING: Screen Savers of the World Unite! , 2000, Science.

[74]  J. P. Grossman,et al.  Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[75]  Vijay S. Pande,et al.  MDEntropy: Information-Theoretic Analyses for Molecular Dynamics , 2017, J. Open Source Softw..

[76]  G. Bowman,et al.  Quantifying Allosteric Communication via Both Concerted Structural Changes and Conformational Disorder with CARDS. , 2017, Journal of chemical theory and computation.

[77]  Albert C. Pan,et al.  Finding transition pathways using the string method with swarms of trajectories. , 2008, The journal of physical chemistry. B.

[78]  Maxwell I. Zimmerman,et al.  Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation , 2019, Science Signaling.

[79]  M I Zimmerman,et al.  How to Run FAST Simulations. , 2016, Methods in enzymology.

[80]  Rolf Hempel,et al.  The MPI Message Passing Interface Standard , 1994 .

[81]  Herbert Jaeger,et al.  Observable Operator Models for Discrete Stochastic Time Series , 2000, Neural Computation.

[82]  Vijay S Pande,et al.  Enhanced modeling via network theory: Adaptive sampling of Markov state models. , 2010, Journal of chemical theory and computation.

[83]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[84]  S. Takada,et al.  Go-ing for the prediction of protein folding mechanisms. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  V. Pande,et al.  Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. , 2007, The Journal of chemical physics.

[86]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[87]  A. Shrake,et al.  Environment and exposure to solvent of protein atoms. Lysozyme and insulin. , 1973, Journal of molecular biology.

[88]  J. Onuchic,et al.  What protein folding teaches us about biological function and molecular machines. , 2015, Current opinion in structural biology.

[89]  C. Pace,et al.  Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding , 1995, Protein science : a publication of the Protein Society.

[90]  Vijay S Pande,et al.  Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. , 2013, Journal of chemical theory and computation.

[91]  Klaus Schulten,et al.  Structural Characterization of λ-Repressor Folding from All-Atom Molecular Dynamics Simulations. , 2012, The journal of physical chemistry letters.

[92]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[93]  Gerhard Stock,et al.  Hidden Complexity of Protein Free-Energy Landscapes Revealed by Principal Component Analysis by Parts , 2010 .

[94]  John Moult,et al.  A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. , 2005, Current opinion in structural biology.

[95]  Vijay S. Pande,et al.  Modeling Molecular Kinetics with tICA and the Kernel Trick , 2015, Journal of chemical theory and computation.

[96]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[97]  Maxwell I. Zimmerman,et al.  Antiparallel β-Sheet Structure within the C-Terminal Region of 42-Residue Alzheimer's Amyloid-β Peptides When They Form 150-kDa Oligomers. , 2015, Journal of molecular biology.

[98]  S. Takada,et al.  On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction , 2002 .

[99]  Vincent A. Voelz,et al.  Atomistic folding simulations of the five-helix bundle protein λ(6−85). , 2011, Journal of the American Chemical Society.

[100]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[101]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[102]  Robert B Best,et al.  Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[103]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[104]  P. Deuflhard,et al.  Robust Perron cluster analysis in conformation dynamics , 2005 .

[105]  S. Doerr,et al.  On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations. , 2014, Journal of chemical theory and computation.

[106]  Gregory R. Bowman,et al.  Accurately modeling nanosecond protein dynamics requires at least microseconds of simulation , 2016, J. Comput. Chem..

[107]  Gregory R. Bowman,et al.  Prediction of New Stabilizing Mutations Based on Mechanistic Insights from Markov State Models , 2017, ACS central science.

[108]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[109]  G. Bowman,et al.  Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites , 2012, Proceedings of the National Academy of Sciences.

[110]  John D. Chodera,et al.  Long-Time Protein Folding Dynamics from Short-Time Molecular Dynamics Simulations , 2006, Multiscale Model. Simul..

[111]  Gregory R Bowman,et al.  Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding , 2018, bioRxiv.

[112]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[113]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[114]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[115]  D. Manstein,et al.  Myosin structure, allostery, and mechano-chemistry. , 2013, Structure.

[116]  Iain D. Campbell,et al.  The march of structural biology , 2002, Nature Reviews Molecular Cell Biology.

[117]  David L Mobley,et al.  Quantifying Correlations Between Allosteric Sites in Thermodynamic Ensembles. , 2009, Journal of chemical theory and computation.

[118]  Jeremy C. Smith,et al.  Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments , 2011, Proceedings of the National Academy of Sciences.

[119]  Frank Noé,et al.  Markov state models of biomolecular conformational dynamics. , 2014, Current opinion in structural biology.

[120]  Rieko Ishima,et al.  Protein dynamics from NMR , 2000, Nature Structural Biology.

[121]  V. Hilser,et al.  The ensemble nature of allostery , 2014, Nature.

[122]  Vijay S Pande,et al.  Protein folded states are kinetic hubs , 2010, Proceedings of the National Academy of Sciences.

[123]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[124]  Joseph A. Bank,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S3 Atomic-level Characterization of the Structural Dynamics of Proteins , 2022 .

[125]  G. Ciccotti,et al.  String method in collective variables: minimum free energy paths and isocommittor surfaces. , 2006, The Journal of chemical physics.

[126]  Vijay S. Pande,et al.  Screen Savers of the World Unite! , 2000, Science.

[127]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[128]  Vijay S Pande,et al.  Progress and challenges in the automated construction of Markov state models for full protein systems. , 2009, The Journal of chemical physics.

[129]  Hao Wu,et al.  Projected metastable Markov processes and their estimation with observable operator models. , 2015, The Journal of chemical physics.

[130]  Christodoulos A. Floudas,et al.  Advances in protein structure prediction and de novo protein design : A review , 2006 .

[131]  Victor Y. Pan,et al.  The complexity of the matrix eigenproblem , 1999, STOC '99.

[132]  Frank Noé,et al.  HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. , 2016, Journal of chemical theory and computation.

[133]  Christine Peter,et al.  EncoderMap: Dimensionality Reduction and Generation of Molecule Conformations. , 2019, Journal of chemical theory and computation.

[134]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[135]  Sotaro Fuchigami,et al.  Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. , 2011, The Journal of chemical physics.

[136]  Ruth Nussinov,et al.  Introduction to Protein Ensembles and Allostery. , 2016, Chemical reviews.

[137]  Philipp Metzner,et al.  Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  S. Gagné,et al.  Backbone dynamics of TEM-1 determined by NMR: evidence for a highly ordered protein. , 2006, Biochemistry.

[139]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[140]  Mohammad M. Sultan,et al.  MSMBuilder: Statistical Models for Biomolecular Dynamics , 2016, bioRxiv.

[141]  Kyle A. Beauchamp,et al.  Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). , 2010, Journal of the American Chemical Society.

[142]  M. Balouiri,et al.  Methods for in vitro evaluating antimicrobial activity: A review☆ , 2015, Journal of pharmaceutical analysis.

[143]  Thomas J Lane,et al.  MSMBuilder2: Modeling Conformational Dynamics at the Picosecond to Millisecond Scale. , 2011, Journal of chemical theory and computation.

[144]  Benoît Roux,et al.  Characterization of conformational equilibria through Hamiltonian and temperature replica‐exchange simulations: Assessing entropic and environmental effects , 2007, J. Comput. Chem..

[145]  K. Freed,et al.  Cooperative folding near the downhill limit determined with amino acid resolution by hydrogen exchange , 2016, Proceedings of the National Academy of Sciences.

[146]  Maxwell I. Zimmerman,et al.  Solid-state NMR evidence for β-hairpin structure within MAX8 designer peptide nanofibers. , 2013, Biophysical journal.

[147]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[148]  F. Noé,et al.  Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling , 2017, Nature Chemistry.

[149]  V. Pande,et al.  Markov State Models: From an Art to a Science. , 2018, Journal of the American Chemical Society.

[150]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[151]  Gregory R. Bowman,et al.  Extensive Conformational Heterogeneity within Protein Cores , 2014, The journal of physical chemistry. B.

[152]  Florian Sittel,et al.  Perspective: Identification of collective variables and metastable states of protein dynamics. , 2018, The Journal of chemical physics.

[153]  M. Gruebele,et al.  Folding λ-repressor at its speed limit , 2004 .

[154]  Fu Kit Sheong,et al.  Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems. , 2015, Journal of chemical theory and computation.

[155]  N. Go Theoretical studies of protein folding. , 1983, Annual review of biophysics and bioengineering.

[156]  Tomasz Heyduk,et al.  Measuring protein conformational changes by FRET/LRET. , 2002, Current opinion in biotechnology.

[157]  Frank Noé,et al.  Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics , 2017, The Journal of chemical physics.

[158]  Gerhard Hummer,et al.  Kinetics from Replica Exchange Molecular Dynamics Simulations. , 2017, Journal of chemical theory and computation.

[159]  J R Porter,et al.  Enspara: Modeling molecular ensembles with scalable data structures and parallel computing , 2018, bioRxiv.

[160]  Philip M. Long,et al.  Performance guarantees for hierarchical clustering , 2002, J. Comput. Syst. Sci..