Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures

Electrochromic devices, which dynamically change color under applied potentials, are widely studied for use in energy-efficient smart windows. The operation of electrochromic materials and devices involves the gain or loss of electrons and simultaneous insertion/extraction of ions with opposite charges to balance the internal electric fields. The performance is therefore limited by kinetics of charge transport in the electrochromic materials as well as ion migration in the electrolyte, materials and at their interfaces. Nanostructured electrochromic materials have an extremely short charge transport distance facilitating charge transport in electrochromic devices and large specific surface area for interaction with electrolytes, and thus may provide fast charge and ions transport, high electrochemical activities and remarkable enhancement of electrochromic properties. The recent progress in application of nanostructures, including nanoparticles, 1D and 2D nanostructures, in metal oxide electrochromic materials and devices is reviewed. A perspective on the development trends in electrochromic materials and devices is also proposed.

[1]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[2]  Fu-Rong Chen,et al.  Electrochromic properties of nanocomposite WO3 films , 2007 .

[3]  Clemens Bechinger,et al.  Photoelectrochromic windows and displays , 1996, Nature.

[4]  S. K. Deb,et al.  A novel electrophotographic system. , 1969, Applied optics.

[5]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[6]  D. K. Kim,et al.  Fast switchable electrochromic properties of tungsten oxide nanowire bundles , 2007 .

[7]  Zhanhu Guo,et al.  Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer , 2014 .

[8]  Jinmin Wang,et al.  Flower-like nickel oxide micro/nanostructures: synthesis and enhanced electrochromic properties , 2015 .

[9]  Xiao Wei Sun,et al.  A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications , 2014, Nature Communications.

[10]  Pooi See Lee,et al.  Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material , 2009 .

[11]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[12]  G. Boschloo,et al.  Electrochromic windows based on viologen-modified nanostructured TiO2 films , 1998 .

[13]  Anne C. Dillon,et al.  Metal-oxide films for electrochromic applications: present technology and future directions , 2010 .

[14]  Hua Zhang Ultrathin Two-Dimensional Nanomaterials. , 2015, ACS nano.

[15]  Haizeng Li,et al.  Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance , 2014 .

[16]  Hongzhi Wang,et al.  Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solar-heat shielding ability , 2014 .

[17]  Xiao Wei Sun,et al.  Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance. , 2012, Chemical communications.

[18]  Ullrich Steiner,et al.  Enhanced Electrochromism in Gyroid‐Structured Vanadium Pentoxide , 2012, Advanced materials.

[19]  Yung-Eun Sung,et al.  Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method , 2009 .

[20]  Hongzhi Wang,et al.  Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance , 2012 .

[21]  Evan L. Runnerstrom,et al.  Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. , 2014, Chemical communications.

[22]  Satyen K. Deb,et al.  Reminiscences on the discovery of electrochromic phenomena in transition metal oxides , 1995 .

[23]  S. Creager,et al.  Inkjet-printed electrochromic devices utilizing polyaniline–silica and poly(3,4-ethylenedioxythiophene)–silica colloidal composite particles , 2008 .

[24]  Jinmin Wang,et al.  Construction of hydrated tungsten trioxide nanosheet films for efficient electrochromic performance , 2015 .

[25]  Sehee Lee,et al.  Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications , 2007 .

[26]  Hua Zhang,et al.  25th Anniversary Article: Hybrid Nanostructures Based on Two‐Dimensional Nanomaterials , 2014, Advanced materials.

[27]  Jinmin Wang,et al.  Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods , 2008 .

[28]  S. A. Agnihotry,et al.  Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties , 2006 .

[29]  Anne C. Dillon,et al.  Electrochromic films produced by ultrasonic spray deposition of tungsten oxide nanoparticles , 2012 .

[30]  Xiuli Wang,et al.  Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance , 2011 .

[31]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[32]  C. Lampert Innovative Solar Optical Materials , 1984 .

[33]  N. Gospodinova,et al.  Conducting polymers prepared by oxidative polymerization: polyaniline , 1998 .

[34]  Jiahua Zhu,et al.  Enhanced Electrical Switching and Electrochromic Properties of Poly(p‐phenylenebenzobisthiazole) Thin Films Embedded with Nano‐WO3 , 2010 .

[35]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[36]  Ming Gong,et al.  Covalently Bonded Polyaniline and para-phenylenediamine Functionalized Graphene Oxide: How the Conductive Two-dimensional Nanostructure Influences the Electrochromic Behaviors of Polyaniline , 2014 .

[37]  Bernard Kippelen,et al.  A Vertically Integrated Solar‐Powered Electrochromic Window for Energy Efficient Buildings , 2014, Advanced materials.

[38]  Chengyi Hou,et al.  Constructing three-dimensional quasi-vertical nanosheet architectures from self-assemble two-dimensional WO3·2H2O for efficient electrochromic devices , 2016 .

[39]  Xun Wang,et al.  Three-dimensional architectures constructed using two-dimensional nanosheets , 2015, Science China Chemistry.

[40]  Bruce Dunn,et al.  Covalently Bonded Polyaniline−TiO2 Hybrids: A Facile Approach to Highly Stable Anodic Electrochromic Materials with Low Oxidation Potentials , 2010 .

[41]  Guofa Cai,et al.  Co-doped NiO nanoflake array films with enhanced electrochromic properties , 2014 .

[42]  O. Glemser,et al.  Kristallisierte Wolframblauverbindungen; Wasserstoffanaloga der Wolframbronzen HxWO3 , 1951 .

[43]  S. A. Agnihotry,et al.  Electrochromic nanostructured tungsten oxide films by sol-gel: Structure and intercalation properties , 2006 .

[44]  Pooi See Lee,et al.  One-Pot Synthesis of Hierarchically Assembled Tungsten Oxide (Hydrates) Nano/Microstructures by a Crystal-Seed-Assisted Hydrothermal Process , 2009 .

[45]  Changhui Zhao,et al.  Enhanced ethanol sensing performance of porous ultrathin NiO nanosheets with neck-connected networks , 2013 .

[46]  V. Thangadurai,et al.  Revisiting tungsten trioxide hydrates (TTHs) synthesis--is there anything new? , 2009, Inorganic chemistry.

[47]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[48]  G. Ozin,et al.  Electrochromic Bragg Mirror: ECBM , 2012, Advanced materials.

[49]  Pooi See Lee,et al.  Room-temperature synthesis of MnO2.3H2O ultrathin nanostructures and their morphological transformation to well-dispersed nanorods. , 2010, Chemical communications.

[50]  Wen Zeng,et al.  Hydrothermal synthesis of flake-flower NiO architectures: Structure, growth and gas-sensing properties , 2016 .

[51]  Hongzhi Wang,et al.  Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device. , 2013, Nanoscale.

[52]  Aryasomayajula Subrahmanyam,et al.  Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films , 2007 .

[53]  S. K. Deb Optical and photoelectric properties and colour centres in thin films of tungsten oxide , 1973 .

[54]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[55]  Jinmin Wang,et al.  Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte , 2009 .

[56]  Zainovia Lockman,et al.  Effect of annealing on acid-treated WO3·H2O nanoplates and their electrochromic properties , 2015 .

[57]  Satyen K. Deb,et al.  Opportunities and challenges in science and technology of WO3 for electrochromic and related applications , 2008 .

[58]  Fu-Rong Chen,et al.  Electrochromic property of nano-composite Prussian Blue based thin film , 2007 .

[59]  Carlos B. Pinheiro,et al.  Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. , 2012, ACS applied materials & interfaces.

[60]  X. W. Sun,et al.  Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device , 2012 .

[61]  Xiao Wei Sun,et al.  Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress , 2010, Materials.

[62]  Hongzhi Wang,et al.  Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance , 2013 .

[63]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[64]  Qian Yang,et al.  Self-Assembly of Parallelly Aligned NiO Hierarchical Nanostructures with Ultrathin Nanosheet Subunits for Electrochemical Supercapacitor Applications. , 2016, ACS applied materials & interfaces.

[65]  M. Ristova,et al.  Electrochromic properties of NiOx prepared by low vacuum evaporation , 2002 .

[66]  Sung Jong Yoo,et al.  Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window , 2007 .

[67]  Satyen K. Deb,et al.  Solid-State Nanocomposite Electrochromic Pseudocapacitors , 2005 .

[68]  Xiaodong Zhuang,et al.  Two‐Dimensional Soft Nanomaterials: A Fascinating World of Materials , 2015, Advanced materials.

[69]  M. Grätzel,et al.  Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes , 1999 .

[70]  C. Lampert,et al.  Electrochromic materials and devices for energy-efficient windows. [161 references] , 1984 .

[71]  J. Macák,et al.  High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. , 2008, Small.

[72]  Guofa Cai,et al.  Constructed TiO2/NiO Core/Shell Nanorod Array for Efficient Electrochromic Application , 2014 .

[73]  Anders Hjelm,et al.  Recent Advances in Electrochromics for Smart Windows Applications , 1998, Optical Interference Coatings.

[74]  R. Devan,et al.  Efficient electrochromic performance of nanoparticulate WO3 thin films , 2013 .

[75]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[76]  C. Granqvist,et al.  Inorganic Non-Oxide Electrochromic Materials , 1995 .

[77]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[78]  Zhigang Zhao,et al.  Single‐Crystalline Tungsten Oxide Quantum Dots for Fast Pseudocapacitor and Electrochromic Applications , 2014, Advanced materials.

[79]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[80]  John R. Platt,et al.  Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field , 1961 .

[81]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .

[82]  Jinmin Wang,et al.  Template synthesis of NiO ultrathin nanosheets using polystyrene nanospheres and their electrochromic properties , 2015 .

[83]  Fu-Rong Chen,et al.  V2O5 nanowires as a functional material for electrochromic device , 2006 .

[84]  Pooi See Lee,et al.  Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris. , 2011, Nanoscale.

[85]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[86]  Gunnar A. Niklasson,et al.  Electrochromic Materials and Devices: : Brief Survey and New Data on Optical Absorption in Tungsten Oxide and Nickel Oxide Films , 2006 .

[87]  J. Tu,et al.  Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. , 2016, Journal of colloid and interface science.

[88]  Johannes Svensson,et al.  Electrochromic tungsten oxide films for energy efficient windows , 1984 .

[89]  Chung-Hsien Yang,et al.  Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition , 2007 .

[90]  Zhanhu Guo,et al.  Polymer nanocomposites for energy storage, energy saving, and anticorrosion , 2015 .

[91]  David R. Rosseinsky,et al.  Electrochromic materials and devices , 2015 .