Boltzmann Entropy of a Freely Expanding Quantum Ideal Gas

We study the time evolution of the Boltzmann entropy of a microstate during the non-equilibrium free expansion of a one-dimensional quantum ideal gas. This quantum Boltzmann entropy, $S_B$, essentially counts the"number"of independent wavefunctions (microstates) giving rise to a specified macrostate. It generally depends on the choice of macrovariables, such as the type and amount of coarse-graining, specifying a non-equilibrium macrostate of the system, but its extensive part agrees with the thermodynamic entropy in thermal equilibrium macrostates. We examine two choices of macrovariables: the $U$-macrovariables are local observables in position space, while the $f$-macrovariables also include structure in momentum space. For the quantum gas, we use a non-classical choice of the $f$-macrovariables. For both choices, the corresponding entropies $s_B^f$ and $s_B^U$ grow and eventually saturate. As in the classical case, the growth rate of $s_B^f$ depends on the momentum coarse-graining scale. If the gas is initially at equilibrium and is then released to expand to occupy twice the initial volume, the per-particle increase in the entropy for the $f$-macrostate, $\Delta s_B^f$, satisfies $\log{2}\leq\Delta s_B^f\leq 2\log{2}$ for fermions, and $0\leq\Delta s_B^f\leq\log{2}$ for bosons. For the same initial conditions, the change in the entropy $\Delta s_B^U$ for the $U$-macrostate is greater than $\Delta s_B^f$ when the gas is in the quantum regime where the final stationary state is not at thermal equilibrium.

[1]  A. Kundu,et al.  Boltzmann’s Entropy During Free Expansion of an Interacting Gas , 2022, Journal of Statistical Physics.

[2]  J. Lebowitz,et al.  Entropy growth during free expansion of an ideal gas , 2021, Journal of Physics A: Mathematical and Theoretical.

[3]  P. Calabrese,et al.  Exact entanglement growth of a one-dimensional hard-core quantum gas during a free expansion , 2021, 2105.05054.

[4]  E. Solano,et al.  Wehrl entropy production rate across a dynamical quantum phase transition , 2020, Physical Review Research.

[5]  S. Majumdar,et al.  Nonequilibrium dynamics of noninteracting fermions in a trap , 2019, EPL (Europhysics Letters).

[6]  J. M. Deutsch,et al.  Quantum coarse-grained entropy and thermalization in closed systems , 2018, Physical Review A.

[7]  J. M. Deutsch,et al.  Quantum coarse-grained entropy and thermodynamics , 2017, Physical Review A.

[8]  G. Mandal,et al.  Quantum quench and thermalization of one-dimensional Fermi gas via phase-space hydrodynamics , 2018, Physical Review A.

[9]  S. Majumdar,et al.  Wigner function of noninteracting trapped fermions , 2018, Physical Review A.

[10]  Tatsuhiko N. Ikeda,et al.  Thermalization and prethermalization in isolated quantum systems: a theoretical overview , 2017, 1712.08790.

[11]  D. Huse,et al.  Macroscopic and microscopic thermal equilibrium , 2016, 1610.02312.

[12]  A. Ohnishi,et al.  Entropy production from chaoticity in Yang-Mills field theory with use of the Husimi function , 2016, 1603.04622.

[13]  A. Millis,et al.  Theory of entropy production in quantum many-body systems , 2015, 1509.04635.

[14]  H. Tasaki Typicality of Thermal Equilibrium and Thermalization in Isolated Macroscopic Quantum Systems , 2015, 1507.06479.

[15]  Z. Rácz,et al.  Full counting statistics in a propagating quantum front and random matrix spectra. , 2012, Physical review letters.

[16]  W. Marsden I and J , 2012 .

[17]  Marcos Rigol,et al.  Entropy of isolated quantum systems after a quench. , 2011, Physical review letters.

[18]  A. Ohnishi,et al.  Towards a Theory of Entropy Production in the Little and Big Bang , 2008, 0809.4831.

[19]  C. Maes,et al.  Quantum macrostates, equivalence of ensembles, and an H-theorem , 2006, math-ph/0601027.

[20]  J. Lebowitz,et al.  On the (Boltzmann) entropy of non-equilibrium systems , 2003, cond-mat/0304251.

[21]  B. Greene,et al.  The fabric of the cosmos : space, time, and the texture of reality , 2004 .

[22]  Carlo Cercignani,et al.  The Derivation of the Boltzmann Equation , 1997 .

[23]  R. Griffiths Statistical irreversibility: classical and quantum. , 1994 .

[24]  Joel L. Lebowitz,et al.  Boltzmann's Entropy and Time's Arrow , 1993 .

[25]  Joel L. Lebowitz,et al.  Macroscopic laws, microscopic dynamics, time's arrow and Boltzmann's entropy , 1993 .

[26]  Aaron Sloman,et al.  THE EMPEROR'S NEW MIND Concerning Computers, Minds and the Laws of Physics , 1992 .

[27]  Eugen Fick,et al.  The quantum statistics of dynamic processes , 1990 .

[28]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[29]  O. Lanford,et al.  On a derivation of the Boltzmann equation , 1983 .

[30]  A. Wehrl On the relation between classical and quantum-mechanical entropy , 1979 .

[31]  N. Mukunda Wigner distribution for angle coordinates in quantum mechanics , 1979 .

[32]  N. Mukunda Algebraic aspects of the wigner distribution in quantum mechanics , 1978 .

[33]  M. Berry Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[34]  L. Boltzmann On Zermelo's Paper “On the Mechanical Explanation of Irreversible Processes” , , 1966 .

[35]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[36]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[37]  伏見 康治,et al.  Some formal properties of the density matrix , 1940 .