Self-consistent calculation of current self-distribution effect in GaAs-AlGaAs oxide-confined VCSELs

A three-dimensional electrical-thermal-optical numerical solver is applied to model GaAs-AlGaAs-based top-emitting oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with GaAs multiple-quantum-well active region. Continuous-wave mode of operation is simulated over a range of voltages, covering the subthreshold spontaneous emission and lasing emission. The effect of self-distribution of electrical current is demonstrated for the first time in self-consistent electrical-thermal-optical simulation of VCSELs.

[1]  Lee,et al.  Thermal conductivity of sputtered oxide films. , 1995, Physical review. B, Condensed matter.

[2]  Thomas J. T. Kwan,et al.  Time-dependent numerical simulation of vertical cavity lasers , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[3]  Peter S. Zory,et al.  A model for GRIN-SCH-SQW diode lasers , 1988 .

[4]  L. Register,et al.  Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.

[5]  Marek Osinski,et al.  Design of InGaN/GaN/AlGaN VCSELs using the effective frequency method , 1999, Photonics West.

[6]  Marek Osinski,et al.  3D electrothermal simulation of intracavity-contacted oxide-confined VCSELs operating at room temperature and at 77 K , 1999, Photonics West.

[7]  R. Baets,et al.  Comparison of optical VCSEL models on the simulation of oxide-confined devices , 2001 .

[8]  Hans Wenzel,et al.  The effective frequency method in the analysis of vertical-cavity surface-emitting lasers , 1997 .

[9]  J. Schlafer,et al.  Measurement of radiative recombination coefficient and carrier leakage in 1.3 μm INGaAsP lasers with lightly doped active layers , 1982 .

[10]  Reinhold Pregla,et al.  Comprehensive modeling of vertical-cavity laser-diodes by the method of lines , 2001 .

[11]  Marek Osinski,et al.  Current self-distribution effect in vertical-cavity surface-emitting semiconductor lasers , 1998, Photonics West.

[12]  A. Kasukawa,et al.  Improved Theory for Carrier Leakage and Diffusion in Multiquantum-well Semiconductor Lasers , 2000 .

[13]  H. Casey,et al.  Heterostructure lasers , 1978 .

[14]  Seungmin Lee,et al.  Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings , 1998 .

[15]  R. Synowicki,et al.  Optical constants of (Al0.98Ga0.02)xOy native oxides , 1998 .

[16]  M. Mohrle,et al.  Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers , 1991 .

[17]  Joel Jacquet,et al.  Numerical modeling of undercut ridge VCSELs designed for CW operation at 1.3 /spl mu/m: design optimization , 1997 .

[18]  Sadao Adachi,et al.  Gaas And Related Materials , 1994 .

[19]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[20]  Jörgen Bengtsson,et al.  A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers , 2002 .

[21]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .

[22]  Marek Osinski,et al.  Design of InGaN-GaN-AlGaN vertical-cavity surface-emitting lasers using electrical-thermal-optical simulation , 2001 .

[23]  Marek Osinski,et al.  Three-dimensional simulation of oxide-confined vertical-cavity surface-emitting semiconductor lasers , 1998, Other Conferences.