Li and Ti Co-doping to stabilize slabs of high-voltage P2-type Na0.560[Li0.041Mn0.642Ni0.221Ti0.095]O2

[1]  Shao‐hua Luo,et al.  Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. , 2019, Journal of colloid and interface science.

[2]  Meilin Liu,et al.  Lithium-Doping Stabilized High-Performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 Cathode for Sodium Ion Batteries. , 2019, Journal of the American Chemical Society.

[3]  Haoshen Zhou,et al.  Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage , 2019, Energy & Environmental Science.

[4]  P. Yan,et al.  Phase transition induced cracking plaguing layered cathode for sodium-ion battery , 2018, Nano Energy.

[5]  Ya‐Xia Yin,et al.  Na+/vacancy disordering promises high-rate Na-ion batteries , 2018, Science Advances.

[6]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[7]  C. Yoon,et al.  Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries , 2017 .

[8]  Yong‐Sheng Hu,et al.  Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode , 2017 .

[9]  Xiulin Fan,et al.  P2-type transition metal oxides for high performance Na-ion battery cathodes , 2017 .

[10]  Y. Meng,et al.  Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition. , 2017, ACS applied materials & interfaces.

[11]  Hongyu Guan,et al.  P2-type Na 2/3 Mn 1-x Al x O 2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics , 2017 .

[12]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[13]  Nagore Ortiz-Vitoriano,et al.  High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries , 2017 .

[14]  X. Sun,et al.  Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties , 2017 .

[15]  Y. Meng,et al.  Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries. , 2017, Journal of the American Chemical Society.

[16]  D. Aurbach,et al.  Electrochemical performance of Na0.6[Li0.2Ni0.2Mn0.6]O2 cathodes with high-working average voltage for Na-ion batteries , 2017 .

[17]  J. Hassoun,et al.  Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure , 2017 .

[18]  Y. Meng,et al.  Direct evidence for high Na+ mobility and high voltage structural processes in P2-Nax[LiyNizMn1−y−z]O2 (x, y, z ≤ 1) cathodes from solid-state NMR and DFT calculations , 2017 .

[19]  Chun‐Sing Lee,et al.  P2-Type NaxCu0.15Ni0.20Mn0.65O2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[20]  S. Passerini,et al.  Lithium‐ and Manganese‐Rich Oxide Cathode Materials for High‐Energy Lithium Ion Batteries , 2016 .

[21]  P. Bruce,et al.  Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies , 2016 .

[22]  Heng Su,et al.  Transition metal oxides for sodium-ion batteries , 2016 .

[23]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[24]  P. Bruce,et al.  High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability , 2016 .

[25]  Haoshen Zhou,et al.  Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance , 2016 .

[26]  Lirong Zheng,et al.  Li-Substituted Co-Free Layered P2/O3 Biphasic Na0.67Mn0.55Ni0.25Ti0.2–xLixO2 as High-Rate-Capability Cathode Materials for Sodium Ion Batteries , 2016 .

[27]  Zhongbo Hu,et al.  New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer , 2016 .

[28]  Neeraj Sharma,et al.  High-Performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 Cathode Material for Ambient-Temperature Sodium-Ion Batteries , 2016 .

[29]  Guoying Chen,et al.  Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides , 2015, Nature Communications.

[30]  A. Tanaka,et al.  Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries , 2015 .

[31]  S. Passerini,et al.  Mg-doping for improved long-term cyclability of layered Na-ion cathode materials - The example of P2-type Na x Mg 0.11 Mn 0.89 O 2 , 2015 .

[32]  Masayoshi Ishida,et al.  A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. , 2015, Angewandte Chemie.

[33]  M. J. McDonald,et al.  P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries , 2015 .

[34]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[35]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[36]  Jing Xu,et al.  Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges , 2013 .

[37]  Haoshen Zhou,et al.  Direct atomic-resolution observation of two phases in the Li(1.2)Mn(0.567)Ni(0.166)Co(0.067)O2 cathode material for lithium-ion batteries. , 2013, Angewandte Chemie.

[38]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[39]  A. Manthiram,et al.  Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes , 2011 .

[40]  Arumugam Manthiram,et al.  Progress in High‐Voltage Cathode Materials for Rechargeable Sodium‐Ion Batteries , 2018 .

[41]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[42]  J. Tarascon,et al.  Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges , 2015 .

[43]  P. Bruce,et al.  Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials , 2015 .

[44]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2–Nax[LiyNizMn1–y–z]O2(0 , 2014 .