Magnetization reversal processes in hot-extruded τ-MnAl-C

Abstract The magnetic domain structure of hot-extruded bulk τ-Mn 53 Al 45 C 2 was studied by Kerr microscopy under application of a magnetic field in-situ. The microstructure consists of recrystallized, fine-grained regions and large non-recrystallized grains which contain a high density of twins. Within these large polytwinned grains, a clear pinning interaction of magnetic domain walls at twin boundaries was observed but with a rather small pinning force. The smaller, recrystallized grains show a higher resistance to magnetization reversal. The critical single domain particle size of this material was estimated at 773 nm and the fine, recrystallized grains are in the range of this size. Demagnetizing the sample following saturation using a 3 T field pulse revealed that individual fine grains reverse independently from their neighbours.

[1]  H. Zijlstra,et al.  Evidence by Lorentz Microscopy for Magnetically Active Stacking Faults in MnAl Alloy , 1966 .

[2]  D. W. Pashley,et al.  The deformation of CuAu I , 1969 .

[3]  M. Yamaguchi,et al.  The deformation behaviour of intermetallic superlattice compounds , 1990 .

[4]  Arti Kashyap,et al.  Predicting the Future of Permanent-Magnet Materials , 2013, IEEE Transactions on Magnetics.

[5]  H. Okumura,et al.  Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets , 1995 .

[6]  Laura H. Lewis,et al.  Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation , 2012, Metallurgical and Materials Transactions A.

[7]  R. Skomski,et al.  Magnetic properties of Fe-doped MnAl , 2014 .

[8]  J. J. Broek,et al.  Defect structure and magnetic properties of MnAl permanent magnet materials , 1978 .

[9]  J. Coey Permanent magnets: Plugging the gap , 2012 .

[10]  Zhu Guang-Qu,et al.  Investigation of Microstructure and Coercivity Mechanisms in the Permanent Magnet Alloy MnAlC by Positron Annihilation and Transmission Electron Microscopy , 1987 .

[11]  A. E. Ermakov,et al.  Magnetic anisotropy of MnAl and MnAlC permanent magnet materials , 1986 .

[12]  Ludwig Schultz,et al.  Twin-like defects in L10 ordered τ-MnAl-C studied by EBSD , 2015 .

[13]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[14]  J. P. Jakubovics,et al.  Domain structure and magnetization processes in MnAl and MnAlC alloys , 1983 .

[15]  J. Jakubovics,et al.  Electron microscope studies of ferromagnetic ordered structures , 1978 .

[16]  J. Jakubovics,et al.  Electron microscope study of the domain structure of MnAlC magnets , 1983 .

[17]  J. Livingston A review of coercivity mechanisms (invited) , 1981 .

[18]  J. Jakubovics,et al.  The effect of crystal defects on the domain structure of Mn-Al alloys , 1977 .

[19]  A. Bergman,et al.  Electronic structure and magnetic properties of L1(0) binary alloys , 2014, 1404.7097.

[20]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[21]  Sushil Auluck,et al.  Study of ferromagnetic instability in τ-MnAl, using first-principles , 2014 .

[22]  N. Kato,et al.  Magnetic properties of Mn-Al-C permanent magnet alloys , 1977 .

[23]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[24]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[25]  Matthew J. Kramer,et al.  Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators , 2012 .

[26]  G. Thomas,et al.  Electron microscopy of Mn-Al-C magnets , 1983 .