An analytical approximate technique for a class of strongly non-linear oscillators

[1]  Baisheng Wu,et al.  A generalization of the Senator–Bapat method for certain strongly nonlinear oscillators , 2005 .

[2]  F. Fernández,et al.  Systematic perturbation calculation of integrals with applications to physics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Baisheng Wu,et al.  Large amplitude non-linear oscillations of a general conservative system , 2004 .

[4]  P. Amore,et al.  The period of a classical oscillator , 2004, math-ph/0405030.

[5]  P. Amore,et al.  High order analysis of nonlinear periodic differential equations , 2003, math-ph/0310060.

[6]  Baisheng Wu,et al.  A New Method for Approximate Analytical Solutions to Nonlinear Oscillations of Nonnatural Systems , 2003 .

[7]  Hans Peter Gottlieb,et al.  Frequencies of oscillators with fractional-power non-linearities , 2003 .

[8]  P. Amore,et al.  Improved LindstedtPoincar method for the solution of nonlinear problems , 2003, math-ph/0303052.

[9]  P. Amore,et al.  Presenting a new method for the solution of nonlinear problems , 2003, math-ph/0303042.

[10]  C. Lim,et al.  A new approximate analytical approach for dispersion relation of the nonlinear Klein-Gordon equation. , 2001, Chaos.

[11]  Baisheng Wu,et al.  A New Approach to Nonlinear Oscillations , 2001 .

[12]  R. Mickens,et al.  OSCILLATIONS IN AN x4/3POTENTIAL , 2001 .

[13]  Baisheng Wu,et al.  A Method for Obtaining Approximate Analytic Periods for a Class of Nonlinear Oscillators , 2001 .

[14]  Y. K. Cheung,et al.  An Elliptic Lindstedt--Poincaré Method for Certain Strongly Non-Linear Oscillators , 1997 .

[15]  A. Rao,et al.  Some Remarks on the Harmonic Balance Method for Mixed-Parity Non-Linear Oscillations , 1994 .

[16]  C. N. Bapat,et al.  A Perturbation Technique that Works Even When the Non-Linearity is Not Small , 1993 .

[17]  J. Summers,et al.  Two timescale harmonic balance. I. Application to autonomous one-dimensional nonlinear oscillators , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[18]  S. B. Yuste,et al.  Comments on the method of harmonic balance in which Jacobi elliptic functions are used , 1991 .

[19]  Ronald E. Mickens,et al.  A generalization of the method of harmonic balance , 1986 .

[20]  Ronald E. Mickens,et al.  Comments on the method of harmonic balance , 1984 .

[21]  Y. K. Cheung,et al.  Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems , 1981 .

[22]  P. Stevenson Optimized Perturbation Theory , 1981 .

[23]  J. Cole,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[24]  Ronald E. Mickens,et al.  Oscillations in Planar Dynamic Systems , 1996, Series on Advances in Mathematics for Applied Sciences.

[25]  K. Huseyin,et al.  An intrinsic multiple-scale harmonic balance method for non-linear vibration and bifurcation problems , 1991 .

[26]  P. Hagedorn Non-Linear Oscillations , 1982 .