Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics

This paper is devoted to new methods of p-adic and ultrametric analysis and their applications in physics and molecular biology. Although the basic definitions are given in the text, it is recommended that the reader be familiar with the material of the first two chapters in Vladimirov, Volovich and Zelenov’s book p-Adic Analysis andMathematical Physics [1]. Our purpose in this paper is to present some new methods and applications of p-adic and ultrametric analysis developed from 19941 till 2007. The overlap of material between this paper and [1] is minimized. In particular, we do not discuss p-adic quantum mechanics and string theory. This paper covers several topics of p-adic and ultrametric analysis and applications. Most of the results given here are new and have been presented earlier only in journal articles. The first topic is purely mathematical; it is related to the development of the theory of ultrametric wavelets and the study of it relationship to the spectral analysis of ultrametric pseudodifferential operators. The role of ultrametric pseudodifferential operators (such as the Vladimirov operator of p-adic fractional differentiation) in ultrametric analysis is similar to that played by the differentiation operator in real analysis. The use of wavelet bases makes it possible to calculate spectra of ultrametric pseudodifferential operators. In general, in the ultrametric case, wavelet theory is substantially simpler and more powerful and convenient than in the real case. We consider here both the p-adic case and the case of general locally compact ultrametric spaces. An important place in the paper is occupied by a discussion of applications of ultrametric analysis. We discuss applications to the theory of spin glasses, dynamics of macromolecules, and genetics. A common feature of the applications of ultrametric analysis considered here is that they describe collective effects in complex systems. The main destination of physics is describing phenomena based on first principles (physical laws). In many cases, such a description involves difficulties. Thus, it is important to develop various approximations relying on patterns of the effective behavior of systems under consideration in various regimes. A well-known example is the passage from a microscopic description of a many-particle system to a kinetic and, then, a hydrodynamic description [2]. Another example is the stochastic limit of quantum theory, in which the dynamics of a quantum system interacting with the environment is approximated by some quantum random process [3]. In this paper, we consider three examples of application to complex systems, where an important role in the description of a system is played by the ultrametric specifics. In general, complexity, which is often discussed in applications to biological systems (as well as in different contexts), does not lead to farreaching conclusions by itself. The examples considered in what follows show that, as supposed in [1], ultrametric analysis makes it possible to give a simple description of some complex systems, for which methods of real analysis are essentially insufficient. Certainly, we do not claim that ultrametric methods

[1]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[2]  J. Tate,et al.  Rigid analytic spaces , 1971 .

[3]  V. S. Vladimirov Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes , 1996 .

[4]  S. V. Kozyrev,et al.  Ultrametric random field. , 2006 .

[5]  L. Frappat,et al.  Crystalizing the Genetic Code , 2000, Journal of biological physics.

[6]  S. Kozyrev p-Adic representation of the Cuntz algebra and the free coherent states , 2008 .

[7]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[8]  Neal Koblitz,et al.  P-adic analysis : a short course on recent work , 1980 .

[9]  Bernard Dwork,et al.  Lectures on p-adic Differential Equations , 1982 .

[10]  L. Gerritzen,et al.  Schottky Groups and Mumford Curves , 1980 .

[11]  Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes , 2000, math-ph/0004017.

[12]  Coincidence of the continuous and discrete p-adic wavelet transforms , 2008 .

[13]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[14]  I. Volovich,et al.  Quantum group particles and non-archimedean geometry , 1991 .

[15]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .

[16]  A. C. M. van Rooij,et al.  Non-Archimedean functional analysis , 1978 .

[17]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[18]  Alex J. Lemin,et al.  The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT* , 2003 .

[19]  Sergio Albeverio,et al.  Harmonic Analysis in the p-Adic Lizorkin Spaces: Fractional Operators, Pseudo-Differential Equations, p-Adic Wavelets, Tauberian Theorems , 2006 .

[20]  E. Zelenov p-adic quantum mechanics and coherent states 2. Oscillator eigenfunctions , 1991 .

[21]  Nonlinear Dynamics Equation in p-Adic String Theory , 2003, math-ph/0306018.

[22]  Michel L. Lapidus,et al.  Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann-Zeta-Function , 1997 .

[23]  Frauenfelder,et al.  Glassy behavior of a protein. , 1989, Physical review letters.

[24]  S. V. Kozyrev,et al.  Replica Symmetry Breaking Related to a General Ultrametric Space Ii: Rsb Solutions and the N → 0 Limit , 2022 .

[25]  G. Parisi,et al.  Magnetic properties of spin glasses in a new mean field theory , 1980 .

[26]  p-Adic Path Integrals for Quadratic Actions , 1997, math-ph/0005026.

[27]  Stillinger Relaxation behavior in atomic and molecular glasses. , 1990, Physical review. B, Condensed matter.

[28]  Jacques Tits,et al.  Groupes réductifs sur un corps local , 1972 .

[29]  Distributions and measures on the boundary of a tree , 2004 .

[30]  Fionn Murtagh,et al.  Multidimensional clustering algorithms , 1985 .

[31]  M. Röckner,et al.  DIRICHLET FORMS IN TERMS OF WHITE NOISE ANALYSIS I: CONSTRUCTION AND QFT EXAMPLES , 1989 .

[32]  p-Adic and adelic harmonic oscillator with a time-dependent frequency , 2000, quant-ph/0005027.

[33]  V. S. Vladimirov,et al.  P-adic Schrödinger-type equation , 1989 .

[34]  J. Igusa,et al.  Lectures on Forms of Higher Degree , 1979 .

[35]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[36]  A. Kochubei,et al.  PARABOLIC EQUATIONS OVER THE FIELD OF $ p$-ADIC NUMBERS , 1992 .

[37]  W. A. Zúñiga-Galindo On the Poles of Igusa's Local Zeta Function for Algebraic Sets , 2003, math/0306427.

[38]  B. Dragovich,et al.  THE WAVE FUNCTION OF THE UNIVERSE AND p-ADIC GRAVITY , 1991 .

[39]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[40]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[41]  E. Zelenov p‐adic path integrals , 1991 .

[42]  RG-invariant curves in the fermionic hierarchical model , 1998 .

[43]  B. Dragovic p-adic perturbation series and adelic summability , 1991 .

[44]  Andrei Khrennikov,et al.  P-ADIC DYNAMICAL SYSTEMS AND NEURAL NETWORKS , 1999 .

[45]  Robert S. Strichartz,et al.  Differential Equations on Fractals: A Tutorial , 2006 .

[46]  J. Klafter,et al.  Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  V. S. Vladimirov Freund-Witten adelic formulae for Veneziano and Virasoro-Shapiro amplitudes , 1993 .

[48]  V. S. Vladimirov,et al.  SPECTRAL THEORY IN p-ADIC QUANTUM MECHANICS, AND REPRESENTATION THEORY , 1991 .

[49]  H Frauenfelder,et al.  Myoglobin: The hydrogen atom of biology and a paradigm of complexity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. V. Kozyrev,et al.  Genetic code on the diadic plane , 2007, q-bio/0701007.

[51]  E. Witten,et al.  Non-archimedean string dynamics , 1988 .

[53]  Britton Chance,et al.  Problems of Biological Physics , 1981 .

[54]  Okada,et al.  Effective scalar field theory of p-adic string. , 1988, Physical review. D, Particles and fields.

[55]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[56]  Estimation non paramtrique de la densit pour des processus temps continu: vitesses minimax , 1997 .

[57]  M. D. Missarov,et al.  Scalar models of p-adic quantum field theory and hierarchical models , 1989 .

[58]  S. V. Kozyrev,et al.  Replica Symmetry Breaking Related to a General Ultrametric Space I: Replica Matrices and Functionals , 2022 .

[59]  Investigation of p-adic Green's function , 1991 .

[60]  J. Benedetto,et al.  A wavelet theory for local fields and related groups , 2003, math/0312036.

[61]  Frames of p-adic wavelets and orbits of the affine group , 2008, 0801.4713.

[62]  P. Freund,et al.  Adelic string N-point amplitudes☆ , 1989 .

[63]  Branko Dragovich,et al.  p-Adic and Adelic Quantum Mechanics , 2003, hep-th/0312046.

[64]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[65]  R. Swanson A unifying concept for the amino acid code. , 1984, Bulletin of mathematical biology.

[66]  Giorgio Parisi Complex Systems: a Physicist's Viewpoint , 1999 .

[67]  V. S. Vladimirov On the freund-witten adelic formula for Veneziano amplitudes , 1993 .

[68]  Vladimir Anashin,et al.  Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers , 1998 .

[69]  Fractional Modified Dyadic Integral and Derivative on ℝ+ , 2005 .

[70]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[71]  S. V. Kozyrev Ultrametric pseudodifferential operators and wavelets for the case of non homogeneous measure , 2008 .

[72]  A. Khrennikov,et al.  Mathematical methods of non-Archimedean physics , 1990 .

[73]  K. Hirsch,et al.  Representation theory and automorphic functions , 1969 .

[74]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[75]  Quantum mechanics over non-Archimedean number fields , 1990 .

[76]  F. Bruhat Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $p$-adiques , 1961 .

[77]  T Pöschel,et al.  The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro. , 2002, Bio Systems.

[78]  V. A. Avetisov,et al.  Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .

[79]  P. Sorba,et al.  A crystal base for the genetic code , 1998 .

[80]  A. Zabrodin Non-archimedean strings and Bruhat-Tits trees , 1989 .

[81]  A. Yu. Khrennikov,et al.  p‐adic quantum mechanics with p‐adic valued functions , 1991 .

[82]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[83]  E. I. Zelonov P-adic quantum mechanics and coherent states , 1991 .

[84]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[85]  J. Onuchic,et al.  Navigating the folding routes , 1995, Science.

[86]  Physics of the spin-glass state , 1993 .

[87]  A. Khrennikov p-adic discrete dynamical systems and their applications in physics and cognitive sciences , 2004, nlin/0402042.

[88]  Nondegenerate ultrametric diffusion , 2004, cond-mat/0403440.

[89]  M. Lapidus,et al.  Fractal Geometry and Number Theory , 1999 .

[90]  Alain Escassut,et al.  Ultrametric Banach Algebras , 2003 .

[91]  F. Choucroun Arbres, espaces ultramétriques et bases de structure uniforme , 1994 .

[92]  Sergei Nechaev,et al.  On metric structure of ultrametric spaces , 2004 .

[93]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[94]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[95]  V. M. Shelkovich,et al.  p-ADIC HAAR MULTIRESOLUTION ANALYSIS , 2007, 0704.0736.

[96]  V. S. Vladimirov,et al.  Adèlic formulas for string amplitudes in fields of algebraic numbers , 1996 .

[97]  Y. Manin p-Adic automorphic functions , 1976 .

[98]  C L Brooks,et al.  Taking a Walk on a Landscape , 2001, Science.

[99]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[100]  On the Replica Fourier Transform , 1997, cond-mat/9709200.

[101]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[102]  Replica symmetry breaking related to a general ultrametric space III: The case of general measure , 2007 .

[103]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[104]  Harrison H. Barrett,et al.  3 – Theory of Random Processes , 1981 .

[105]  Open and closed p-adic strings and quadratic extensions of number fields , 1988 .

[106]  p-ADIC AND ADELIC GENERALIZATION OF QUANTUM COSMOLOGY , 1999 .

[107]  Giorgio Parisi The physical Meaning of Replica Symmetry Breaking , 2002 .

[108]  E. Lerner,et al.  Fixed points of renormalization group for the hierarchical fermionic model , 1994 .

[109]  H. Kaneko A class of spatially inhomogeneous Dirichlet spaces on the p-adic number field , 2000 .

[110]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[111]  K. Mahler p-adic numbers and their functions , 1981 .

[112]  M. Karplus,et al.  Hidden complexity of free energy surfaces for peptide (protein) folding. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[113]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[114]  Сергей Владимирович Козырев,et al.  Всплески и спектральный анализ ультраметрических псевдодифференциальных операторов@@@Wavelets and spectral analysis of ultrametric pseudodifferential operators , 2007 .

[115]  Hans Frauenfelder,et al.  Complexity in proteins , 1995, Nature Structural Biology.

[116]  A. Grosberg REVIEWS OF TOPICAL PROBLEMS: Disordered polymers , 1997 .

[117]  Jeffrey W. Roberts,et al.  遺伝子の分子生物学 = Molecular biology of the gene , 1970 .

[118]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[119]  S. Kozyrev Rigged Hilbert Space of Free Coherent States and p-Adic Numbers , 2002 .

[120]  Marcus Nilsson,et al.  P-adic Deterministic and Random Dynamics , 2004 .

[121]  Robert L. Benedetto Examples of wavelets for local fields , 2003 .

[122]  W. R. Wade,et al.  Walsh Series, An Introduction to Dyadic Harmonic Analysis , 1990 .

[123]  V. Avetisov,et al.  p-Adic description of characteristic relaxation in complex systems , 2002, cond-mat/0210447.

[124]  D. Wiersma,et al.  Looking into the energy landscape of myoglobin , 1995, Nature Structural Biology.

[125]  Jun-ichi Igusa,et al.  An Introduction to the Theory of Local Zeta Functions , 2007 .

[126]  Sibani,et al.  Diffusion in hierarchies. , 1988, Physical review. A, General physics.

[127]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[128]  M. Lapidus,et al.  Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions , 2005 .

[129]  p-adic Heisenberg group and Maslov index , 1993 .

[130]  A. Khrennikov,et al.  Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .

[131]  p‐Adic Models of Turbulence , 2006 .

[132]  Andrei S. Rapinchuk,et al.  Algebraic groups and number theory , 1992 .

[133]  Giorgio Parisi,et al.  Random Magnetic Fields, Supersymmetry, and Negative Dimensions , 1979 .

[134]  Giles Auchmuty,et al.  WAVELET ANALYSIS ON THE CANTOR DYADIC GROUP , 1998 .

[135]  Luigi Accardi,et al.  Quantum Stochastic Processes , 1982 .

[136]  I. Shafarevich,et al.  FOUNDATIONS OF ALGEBRAIC GEOMETRY , 1969 .

[138]  K. Yasuda Additive Processes on Local Fields , 1996 .

[139]  S. B. Stechkin,et al.  Basic wavelet theory , 1998 .

[140]  Igor Volovich,et al.  p-adic string , 1987 .

[141]  I. V. Volovich,et al.  p-adic space-time and string theory , 1987 .

[142]  A. D. Mironov,et al.  Multiloop calculations inp-adic string theory and Bruhat-Tits trees , 1989 .

[143]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[144]  A. Efimov,et al.  Walsh Series and Transforms: Theory and Applications , 1991 .

[145]  A. Khrennikov,et al.  Wavelets on ultrametric spaces , 2005 .

[146]  J. Klafter,et al.  Relaxation behaviour in ultrametric spaces , 1986 .

[147]  Branko Dragovich,et al.  A p-adic model of DNA sequence and genetic code , 2006, ArXiv.

[148]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[149]  E. Zelenov p-Adic quantum mechanics for p=2 , 1989 .

[150]  R D Young,et al.  Protein states and proteinquakes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[151]  M. Taylor p‐ADIC NUMBERS AND THEIR FUNCTIONS: (Cambridge Tracts in Mathematics, 76) , 1984 .

[152]  P. Freund,et al.  Non-archimedean strings , 1987 .

[153]  I. Volovich Number theory as the ultimate physical theory , 1987 .

[154]  J. Kigami,et al.  Analysis on Fractals , 2001 .

[155]  Ulrich Güntzer,et al.  Non-Archimedean Analysis , 1984 .

[156]  Helmut Schiessel,et al.  Hierarchical analogues to fractional relaxation equations , 1993 .

[157]  M. Karplus,et al.  The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .

[158]  A. Kochubei Schrödinger-type operator over p-adic number field , 1991 .

[159]  Yu. I. Manin,et al.  New dimensions in geometry , 1985 .

[160]  Y. Meyer Wavelets and Operators , 1993 .

[161]  S. V. Kozyrev,et al.  p-Adic Pseudodifferential Operators and p-Adic Wavelets , 2003, math-ph/0303045.

[162]  A. Blumen,et al.  Subordination on ultrametric spaces , 1987 .

[163]  Sergio Albeverio,et al.  p-ADIC HILBERT SPACE REPRESENTATION OF QUANTUM SYSTEMS WITH AN INFINITE NUMBER OF DEGREES OF FREEDOM , 1996 .

[164]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[165]  A. F. Monna,et al.  Analyse non-archimédienne , 1970 .

[166]  p-Adic Pseudodifferential Operators and Analytic Continuation of Replica Matrices , 2005 .

[167]  W. F. Ames,et al.  Measures and Differential Equations in Infinite-Dimensional Space , 1991 .

[168]  V. S. Vladimirov Generalized functions over the field of p-adic numbers , 1988 .

[169]  S. Albeverio,et al.  p-Adic Multiresolution Analysis and Wavelet Frames , 2008, 0802.1079.

[170]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[171]  Fionn Murtagh,et al.  The Haar Wavelet Transform of a Dendrogram , 2006, J. Classif..

[172]  Giorgio Parisi,et al.  Toward a mean field theory for spin glasses , 1979 .

[173]  I. Volovich,et al.  p-adic superstrings , 1988 .

[174]  M. V. Altaisky,et al.  p-Adic wavelet transform and quantum physics ∗ , 2004 .

[175]  M. Mézard,et al.  Nature of the Spin-Glass Phase , 1984 .

[176]  V. Arnold,et al.  Mathematics: Frontiers and Perspectives , 2000 .

[177]  Fernando Q. Gouvêa p -adic Numbers , 1993 .

[178]  Vladimir Anashin,et al.  Pseudorandom number generation by p-adic ergodic transformations: an addendum , 2004, ArXiv.

[179]  E. Lerner,et al.  P-adic Feynman and string amplitudes , 1989 .

[180]  Igor Volovich,et al.  Quantum Theory and Its Stochastic Limit , 2002 .

[181]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[182]  B A Huberman,et al.  Ultradiffusion: the relaxation of hierarchical systems , 1985 .

[183]  Svante Wold,et al.  A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids , 2005, Journal of Molecular Evolution.

[184]  A. Blumen,et al.  Variance of random walks on Cayley trees: application to the trapping problem , 1990 .

[185]  Sergio Albeverio,et al.  A random walk on p-adics - the generator and its spectrum , 1994 .

[186]  Igor Volovich,et al.  p-adic quantum mechanics , 1989 .

[187]  A. Kochubei Onp-adic Green's functions , 1993 .

[188]  I. V. Volovich,et al.  Selected topics of p-adic mathematical physics and analysis : collected papers dedicated to the 80th birthday of academician Vasilii Sergeevich Vladimirov , 2004 .

[189]  Localization in space for a free particle in ultrametric quantum mechanics , 2006 .

[190]  I. Volovich,et al.  On the adelic string amplitudes , 1988 .

[191]  Igor E. Shparlinski,et al.  Character Sums with Exponential Functions and their Applications: Bounds of Short Character Sums , 1999 .

[192]  Jayanth R Banavar,et al.  Physics of proteins. , 2007, Annual review of biophysics and biomolecular structure.

[193]  Hierarchical diffusion, aging and multifractality , 1996, cond-mat/9604033.

[194]  A. Escassut Analytic Elements in P-Adic Analysis , 1995 .

[195]  H. Frauenfelder,et al.  The energy landscape in non-biological and biological molecules , 1998, Nature Structural Biology.

[196]  D. Wales A Microscopic Basis for the Global Appearance of Energy Landscapes , 2001, Science.

[197]  F. Stillinger,et al.  Packing Structures and Transitions in Liquids and Solids , 1984, Science.

[198]  Andrei Khrennikov,et al.  p-adic refinable functions and MRA-based wavelets , 2007, J. Approx. Theory.

[199]  Сергей Владимирович Козырев,et al.  Теория всплесков как $p$-адический спектральный анализ@@@Wavelet theory as $p$-adic spectral analysis , 2002 .

[200]  F. Hausdorff Erweiterung einer Homöomorphie , 1930 .

[201]  Replica Fourier Transforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices , 1997, cond-mat/9703132.

[202]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[203]  V. S. Anachin Uniformly distributed sequences ofp-adic integers , 1994 .

[204]  V. Varadarajan NON-ARCHIMEDEAN MODELS FOR SPACE–TIME , 2001 .

[205]  Y. Manin REFLECTIONS ON ARITHMETICAL PHYSICS**Dedicated to Alexander Grothendieck on his 60th birthday. , 1989 .

[206]  Continuum limit in the fermionic hierarchical model , 1999 .

[207]  P. Freund,et al.  p-adic numbers in physics , 1993 .

[208]  André Weil,et al.  Basic number theory , 1967 .

[209]  On Modified Strong Dyadic Integral and Derivative , 2002 .

[210]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[211]  A Khrennikov,et al.  Human subconscious as a p-adic dynamical system. , 1998, Journal of theoretical biology.

[212]  S. V. Kozyrev Toward an ultrametric theory of turbulence , 2008 .