Review of Different Sequence Motif Finding Algorithms

The DNA motif discovery is a primary step in many systems for studying gene function. Motif discovery plays a vital role in identification of Transcription Factor Binding Sites (TFBSs) that help in learning the mechanisms for regulation of gene expression. Over the past decades, different algorithms were used to design fast and accurate motif discovery tools. These algorithms are generally classified into consensus or probabilistic approaches that many of them are time-consuming and easily trapped in a local optimum. Nature-inspired algorithms and many of combinatorial algorithms are recently proposed to overcome these problems. This paper presents a general classification of motif discovery algorithms with new sub-categories that facilitate building a successful motif discovery algorithm. It also presents a summary of comparison between them.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Sanguthevar Rajasekaran,et al.  Exact Algorithms for Planted Motif Problems , 2005, J. Comput. Biol..

[3]  Gary D. Stormo,et al.  Identification of consensus patterns in unaligned DNA sequences known to be functionally related , 1990, Comput. Appl. Biosci..

[4]  M. Sadeghi,et al.  Genetic algorithm for dyad pattern finding in DNA sequences. , 2009, Genes & genetic systems.

[5]  Arlindo L. Oliveira,et al.  Bioinformatics Original Paper Musa: a Parameter Free Algorithm for the Identification of Biologically Significant Motifs , 2022 .

[6]  Miguel A. Vega-Rodríguez,et al.  Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding , 2013, EvoBIO.

[7]  Weixiong Zhang,et al.  WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar , 2005, Nucleic Acids Res..

[8]  Leping Li,et al.  GADEM: A Genetic Algorithm Guided Formation of Spaced Dyads Coupled with an EM Algorithm for Motif Discovery , 2009, J. Comput. Biol..

[9]  Shunji Tanaka,et al.  Improved exact enumerative algorithms for the planted (l, d)-motif search problem , 2014, TCBB.

[10]  Carolyn J. Mattingly,et al.  Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[11]  Li-Yeh Chuang,et al.  DNA Motif Discovery Based on Ant Colony Optimization and Expectation Maximization , 2010 .

[12]  Jaime I. Dávila,et al.  Fast and Practical Algorithms for Planted (l, d) Motif Search , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Prudence W. H. Wong,et al.  Finding DNA Regulatory Motifs with Position-dependent Models , 2013 .

[14]  Ping Wang,et al.  An Entropy-Based Position Projection Algorithm for Motif Discovery , 2016, BioMed research international.

[15]  Tom Altman,et al.  HIGEDA: a hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences , 2010, Bioinform..

[16]  Wen-Jing Hsu,et al.  RecMotif: a novel fast algorithm for weak motif discovery , 2010, BMC Bioinformatics.

[17]  Martin C. Frith,et al.  Cluster-Buster: finding dense clusters of motifs in DNA sequences , 2003, Nucleic Acids Res..

[18]  Hongwei Huo,et al.  An Affinity Propagation-Based DNA Motif Discovery Algorithm , 2015, BioMed Research International.

[19]  Kathleen Marchal,et al.  A Gibbs sampling method to detect over-represented motifs in the upstream regions of co-expressed genes , 2001, RECOMB.

[20]  Douglas L. Brutlag,et al.  BioProspector: Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes , 2000, Pacific Symposium on Biocomputing.

[21]  Jun S. Liu,et al.  An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments , 2002, Nature Biotechnology.

[22]  Sun-Yuan Hsieh,et al.  An Improved Heuristic Algorithm for Finding Motif Signals in DNA Sequences , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[24]  Miguel A. Vega-Rodríguez,et al.  Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm , 2011, EvoBio.

[25]  Chengpeng Bi,et al.  Seam: a Stochastic EM-Type Algorithm for Motif-Finding in Biopolymer Sequences , 2007, J. Bioinform. Comput. Biol..

[26]  Walid Al-Atabany,et al.  GWOMF: Grey Wolf Optimization for motif finding , 2017, 2017 13th International Computer Engineering Conference (ICENCO).

[27]  Kumar Sanjay,et al.  DNA Sequence Assembly using Particle Swarm Optimization , 2011 .

[28]  Jianhua Ruan,et al.  A particle swarm optimization-based algorithm for finding gapped motifs , 2010, BioData Mining.

[29]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..

[30]  Eric Rivals,et al.  Reverse engineering of compact suffix trees and links: A novel algorithm , 2014, J. Discrete Algorithms.

[31]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[32]  Pavel A. Pevzner,et al.  Combinatorial Approaches to Finding Subtle Signals in DNA Sequences , 2000, ISMB.

[33]  Francis Y. L. Chin,et al.  Voting algorithms for discovering long motifs , 2005, APBC.

[34]  Jeffrey Scott Vitter,et al.  RefSelect: a reference sequence selection algorithm for planted (l, d) motif search , 2016, BMC Bioinformatics.

[35]  Sanguthevar Rajasekaran,et al.  A Simple Algorithm for (l, d) Motif Search1 , 2009, 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[36]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Emi Tanaka,et al.  Improving MEME via a two-tiered significance analysis , 2014, Bioinform..

[38]  Sriram Ramabhadran,et al.  Finding subtle motifs by branching from sample strings , 2003, ECCB.

[39]  Maulika S. Patel,et al.  Motif Finding with Application to the Transcription Factor Binding Sites Problem , 2015 .

[40]  Graziano Pesole,et al.  An algorithm for finding signals of unknown length in DNA sequences , 2001, ISMB.

[41]  Jun S. Liu,et al.  Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. , 1993, Science.

[42]  Sanguthevar Rajasekaran,et al.  Space and Time Efficient Algorithms for Planted Motif Search , 2006, International Conference on Computational Science.

[43]  A. A. Reilly,et al.  An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences , 1990, Proteins.

[44]  Zhi-Zhong Chen,et al.  Fast Exact Algorithms for the Closest String and Substring Problems with Application to the Planted (L,d)-Motif Model , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  Michael Q. Zhang,et al.  SCPD: a promoter database of the yeast Saccharomyces cerevisiae , 1999, Bioinform..

[46]  Sanguthevar Rajasekaran,et al.  PMS5: an efficient exact algorithm for the (ℓ, d)-motif finding problem , 2011, BMC Bioinformatics.

[47]  Andrew M. Tyrrell,et al.  Regulatory Motif Discovery Using a Population Clustering Evolutionary Algorithm , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[48]  Jianer Chen,et al.  Integrating Sample-Driven and Pattern-Driven Approaches in Motif Finding , 2004, WABI.

[49]  Wei Wu,et al.  Logos: a Modular Bayesian Model for de Novo Motif Detection , 2004, J. Bioinform. Comput. Biol..

[50]  Yann Ponty,et al.  GenRGenS: software for generating random genomic sequences and structures , 2006, Bioinform..

[51]  Shoudan Liang,et al.  cWINNOWER algorithm for finding fuzzy DNA motifs , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[52]  Khaled Rasheed,et al.  MDGA: motif discovery using a genetic algorithm , 2005, GECCO '05.

[53]  Jukka Corander,et al.  Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model , 2014, Statistical applications in genetics and molecular biology.

[54]  Kenta Nakai,et al.  A Genetic Algorithm for Motif Finding Based on Statistical Significance , 2015, IWBBIO.

[55]  Philip Machanick,et al.  The value of position-specific priors in motif discovery using MEME , 2010, BMC Bioinformatics.

[56]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[57]  Jeremy Buhler,et al.  Finding motifs using random projections , 2001, RECOMB.

[58]  Miguel A. Vega-Rodríguez,et al.  Solving the motif discovery problem by using Differential Evolution with Pareto Tournaments , 2010, IEEE Congress on Evolutionary Computation.

[59]  Saman K. Halgamuge,et al.  Particle Swarm Optimisation for Protein Motif Discovery , 2004, Genetic Programming and Evolvable Machines.

[60]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[61]  Jun S. Liu,et al.  Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies , 1995 .

[62]  Xun Wang and Ying Miao GAEM: A Hybrid Algorithm Incorporating GA with EM for Planted Edited Motif Finding Problem , 2014 .

[63]  Dianhui Wang,et al.  An Improved Genetic Algorithm for DNA Motif Discovery with Public Domain Information , 2008, ICONIP.

[64]  Andrew D. Smith,et al.  Toward Optimal Motif Enumeration , 2003, WADS.

[65]  Eric C. Rouchka,et al.  rMotifGen: random motif generator for DNA and protein sequences , 2007, BMC Bioinformatics.

[66]  Qiang Yu,et al.  PairMotif: A New Pattern-Driven Algorithm for Planted (l, d) DNA Motif Search , 2012, PloS one.

[67]  Dharmender Kumar,et al.  A review on Artificial Bee Colony algorithm , 2013 .

[68]  Wei Wu,et al.  An Iterative Algorithm for Motif Discovery , 2013 .

[69]  Jagath C. Rajapakse,et al.  ListMotif: A time and memory efficient algorithm for weak motif discovery , 2010, 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering.

[70]  Turgay Ibrikci,et al.  A Bayesian Scoring Scheme based Particle Swarm Optimization algorithm to identify transcription factor binding sites , 2012, Appl. Soft Comput..

[71]  Vladimir Pavlovic,et al.  Efficient motif finding algorithms for large-alphabet inputs , 2010, BMC Bioinformatics.

[72]  Fuzhong Nian,et al.  An Adaptive Particle Swarm Optimization Algorithm Based on Directed Weighted Complex Network , 2014 .

[73]  George Varghese,et al.  A uniform projection method for motif discovery in DNA sequences , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[74]  Jianhua Ruan,et al.  A novel swarm intelligence algorithm for finding DNA motifs , 2009, Int. J. Comput. Biol. Drug Des..

[75]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[76]  Uri Keich,et al.  Finding motifs in the twilight zone , 2002, RECOMB '02.

[77]  Yael Mandel-Gutfreund,et al.  DRIMust: a web server for discovering rank imbalanced motifs using suffix trees , 2013, Nucleic Acids Res..

[78]  H. Bussemaker,et al.  Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Tavish Armstrong,et al.  The Performance of Open Source Applications , 2013 .

[80]  Xiaohui Xie,et al.  EXTREME: an online EM algorithm for motif discovery , 2014, Bioinform..

[81]  Caiyan Jia,et al.  A New Exhaustive Method and Strategy for Finding Motifs in ChIP-Enriched Regions , 2014, PloS one.

[82]  Graziano Pesole,et al.  Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes , 2004, Nucleic Acids Res..

[83]  Shane T. Jensen,et al.  Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective , 2004 .

[84]  Yaduvir Singh,et al.  Genetic Algorithms: Concepts, Design for Optimization of Process Controllers , 2011, Comput. Inf. Sci..

[85]  Miguel A. Vega-Rodríguez,et al.  Comparing Multiobjective Artificial Bee Colony Adaptations for Discovering DNA Motifs , 2012, EvoBIO.

[86]  Alastair M. Kilpatrick,et al.  Stochastic EM-based TFBS motif discovery with MITSU , 2014, Bioinform..

[87]  Daisuke Kihara,et al.  EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences , 2006, BMC Bioinformatics.

[88]  Hamed Shah-Hosseini,et al.  The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm , 2009, Int. J. Bio Inspired Comput..

[89]  Marie-France Sagot,et al.  RISOTTO: Fast Extraction of Motifs with Mismatches , 2006, LATIN.

[90]  Jagath C. Rajapakse,et al.  Graphical Approach to Weak Motif Recognition in Noisy Data Sets , 2006, PRIB.

[91]  Eric C. Rouchka,et al.  DNA motif detection using particle swarm optimization and expectation-maximization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[92]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[93]  Mai S. Mabrouk,et al.  Adaptation of cuckoo search algorithm for the Motif Finding problem , 2014, 2014 10th International Computer Engineering Conference (ICENCO).

[94]  Vijayvargiya Shripal,et al.  A Genetic Algorithm with Clustering for Finding Regulatory Motifs in DNA Sequences , 2011 .

[95]  Xiaoyan Zhao,et al.  Improved Pattern-Driven Algorithms for Motif Finding in DNA Sequences , 2005, Systems Biology and Regulatory Genomics.

[96]  Sartaj Sahni,et al.  PMS6: A fast algorithm for motif discovery , 2014, 2012 IEEE 2nd International Conference on Computational Advances in Bio and medical Sciences (ICCABS).

[97]  William Stafford Noble,et al.  Motif-based analysis of large nucleotide data sets using MEME-ChIP , 2014, Nature Protocols.

[98]  A. Sharov,et al.  Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder , 2009, DNA research : an international journal for rapid publication of reports on genes and genomes.

[99]  Javad Mohammadzadeh,et al.  PSOMF: An algorithm for pattern discovery using PSO , 2008 .

[100]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[101]  D Karaboga,et al.  A discrete artificial bee colony algorithm for detecting transcription factor binding sites in DNA sequences. , 2016, Genetics and molecular research : GMR.

[102]  Hong Wang,et al.  Bacterial Colony Optimization , 2012 .

[103]  Rui Jiang,et al.  Basics of Bioinformatics , 2013, Springer Berlin Heidelberg.

[104]  Rong-Ming Chen,et al.  FMGA: finding motifs by genetic algorithm , 2004, Proceedings. Fourth IEEE Symposium on Bioinformatics and Bioengineering.

[105]  Hitoshi Iba,et al.  Identification of weak motifs in multiple biological sequences using genetic algorithm , 2006, GECCO.

[106]  Kefeng Wang,et al.  Motif identification method based on Gibbs sampling and genetic algorithm , 2017, Cluster Computing.

[107]  Edmund J. Crampin,et al.  A Bayesian Search for Transcriptional Motifs , 2010, PloS one.

[108]  Eric C. Rouchka,et al.  Gibbs Recursive Sampler: finding transcription factor binding sites , 2003, Nucleic Acids Res..

[109]  Christina Boucher,et al.  A Graph Clustering Approach to Weak Motif Recognition , 2007, WABI.

[110]  Jagath C Rajapakse,et al.  Graphical approach to weak motif recognition. , 2004, Genome informatics. International Conference on Genome Informatics.

[111]  Jeffrey Scott Vitter,et al.  An Efficient Algorithm for Discovering Motifs in Large DNA Data Sets , 2015, IEEE Transactions on NanoBioscience.

[112]  Xin-She Yang,et al.  Cuckoo search: recent advances and applications , 2013, Neural Computing and Applications.

[113]  Wilfred W. Li,et al.  MEME: discovering and analyzing DNA and protein sequence motifs , 2006, Nucleic Acids Res..

[114]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[115]  Serafim Batzoglou,et al.  Eukaryotic regulatory element conservation analysis and identification using comparative genomics. , 2004, Genome research.

[116]  Jianhua Ruan,et al.  A Particle Swarm Optimization algorithm for finding DNA sequence motifs , 2008, 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops.

[117]  Christina Anne Boucher,et al.  Combinatorial and Probabilistic Approaches to Motif Recognition , 2010 .

[118]  Michael Q. Zhang,et al.  A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information , 2011, Nucleic acids research.

[119]  Wen-Jing Hsu,et al.  Tree-structured algorithm for long weak motif discovery , 2011, Bioinform..

[120]  Graziano Pesole,et al.  WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences , 2007, BMC Bioinformatics.

[121]  Charles Elkan,et al.  The Value of Prior Knowledge in Discovering Motifs with MEME , 1995, ISMB.

[122]  Sanguthevar Rajasekaran,et al.  A speedup technique for (l, d)-motif finding algorithms , 2011, BMC Research Notes.

[123]  U. Srinivasulu Reddy,et al.  Planted (l, d) - Motif Finding using Particle Swarm Optimization , 2010 .

[124]  Serafim Batzoglou,et al.  MotifCut: regulatory motifs finding with maximum density subgraphs , 2006, ISMB.

[125]  Lizhi Li Graphic Network based Methods in Discovering TFBS Motifs , 2012 .

[126]  Timothy L. Bailey,et al.  Gene expression Advance Access publication May 4, 2011 DREME: motif discovery in transcription factor ChIP-seq data , 2011 .

[127]  Johannes Söding,et al.  Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences , 2016, bioRxiv.

[128]  John E. Reid,et al.  STEME: efficient EM to find motifs in large data sets , 2011, Nucleic acids research.

[129]  Chengpeng Bi,et al.  A Genetic-Based EM Motif-Finding Algorithm for Biological Sequence Analysis , 2007, 2007 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology.

[130]  Angela Makolo,et al.  Comparative Analysis of Similarity Check Mechanism for Motif Extraction , 2012 .

[131]  Sanguthevar Rajasekaran,et al.  qPMS7: A Fast Algorithm for Finding (ℓ, d)-Motifs in DNA and Protein Sequences , 2012, PloS one.

[132]  Pinar Civicioglu,et al.  A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms , 2013, Artificial Intelligence Review.

[133]  Mehmet Kaya,et al.  MOGAMOD: Multi-objective genetic algorithm for motif discovery , 2009, Expert Syst. Appl..

[134]  G. Stormo,et al.  Identifying protein-binding sites from unaligned DNA fragments. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[135]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[136]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .

[137]  Xun Wang,et al.  Finding Motifs in DNA Sequences Using Low-Dispersion Sequences , 2014, J. Comput. Biol..

[138]  Saurabh Sinha,et al.  YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation , 2003, Nucleic Acids Res..

[139]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[140]  Hongwei Huo,et al.  Optimizing genetic algorithm for motif discovery , 2010, Math. Comput. Model..

[141]  J. Collado-Vides,et al.  Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.

[142]  Jon Wakefield,et al.  A transdimensional Bayesian model for pattern recognition in DNA sequences. , 2008, Biostatistics.

[143]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks , 2007, MDAI.

[144]  Yansen Su,et al.  MRPGA: Motif Detecting by Modified Random Projection Strategy and Genetic Algorithm , 2013 .

[145]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[146]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[147]  Mohamed B. Abdelhalim,et al.  An Efficient System for Finding Functional Motifs in Genomic DNA Sequences by Using Nature-Inspired Algorithms , 2016, AISI.

[148]  K. Réblová,et al.  DNA mutation motifs in the genes associated with inherited diseases , 2017, PloS one.

[149]  Amar Mukherjee,et al.  New Algorithms for Finding Monad Patterns in DNA Sequences , 2004, SPIRE.

[150]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[151]  J. Lumley AUSTRALIA , 1920, The Lancet.

[152]  Rahul Chauhan,et al.  A Review : Applying Genetic Algorithms for Motif Discovery , 2012 .

[153]  Kwong-Sak Leung,et al.  TFBS identification by position- and consensus-led genetic algorithm with local filtering , 2007, GECCO '07.

[154]  Eric S. Ho,et al.  iTriplet, a rule-based nucleic acid sequence motif finder , 2009, Algorithms for Molecular Biology.

[155]  J. van Helden,et al.  RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets , 2011, Nucleic acids research.

[156]  Eleazar Eskin,et al.  Finding composite regulatory patterns in DNA sequences , 2002, ISMB.

[157]  Carlos A. Brizuela,et al.  Comparison of Simple Encoding Schemes in GA's for the Motif Finding Problem: Preliminary Results , 2007, BSB.

[158]  Jonathan M. Keith,et al.  Bioinformatics: Volume I: Data, Sequence Analysis, and Evolution , 2008 .

[159]  Jin Xiong,et al.  Essential bioinformatics , 2006 .

[160]  Geoffrey I. Webb,et al.  Encyclopedia of Machine Learning , 2011, Encyclopedia of Machine Learning.

[162]  Dipankar Dasgupta,et al.  Motif discovery in upstream sequences of coordinately expressed genes , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[163]  Zhi Wei,et al.  GAME: detecting cis-regulatory elements using a genetic algorithm , 2006, Bioinform..

[164]  Chengpeng Bi,et al.  A Monte Carlo EM Algorithm for De Novo Motif Discovery in Biomolecular Sequences , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[165]  Sanguthevar Rajasekaran,et al.  Pampa : An Improved Branch and Bound Algorithm for Planted ( l , d ) Motif Search , 2022 .

[166]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[167]  Abdellah Boukerram,et al.  Motif Finding Using Ant Colony Optimization , 2010, ANTS Conference.

[168]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.