A model for gauged skyrmions with low binding energies
暂无分享,去创建一个
[1] G. Brown,et al. The Multifaceted Skyrmion , 2009, 0907.1963.
[2] D. Harland,et al. Skyrmions with low binding energies , 2015, 1501.05455.
[3] D. Harland,et al. On the charge density and asymptotic tail of a monopole , 2015, 1508.03232.
[4] P. Sutcliffe. Skyrmions, instantons and holography , 2010, 1003.0023.
[5] Solitonic fullerene structures in light atomic nuclei. , 2000, Physical review letters.
[6] M. Atiyah,et al. Geometry and kinematics of two Skyrmions , 1993 .
[7] Changhai Lu,et al. SU(2) calorons and magnetic monopoles , 1998, hep-th/9802108.
[8] D. H. Tchrakian,et al. Solitons/instantons in d -dimensional ? gauged ? Skyrme models , 1998 .
[9] H. Shepard,et al. Periodic Euclidean Solutions and the Finite Temperature Yang-Mills Gas , 1978 .
[10] J. Hurtubise. The asymptotic Higgs field of a monopole , 1985 .
[11] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[12] E. Farhi,et al. Decoupling a fermion in the standard electro-weak theory , 1984 .
[13] C. Adam,et al. The dielectric Skyrme model , 2020, Physics Letters B.
[14] P. Sutcliffe,et al. Skyrmions and Clustering in Light Nuclei. , 2018, Physical review letters.
[15] D. Harland. Topological energy bounds for the Skyrme and Faddeev models with massive pions , 2013, 1311.2403.
[16] M. Abramowitz,et al. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .
[17] C. Callan,et al. Monopole Catalysis of Skyrmion Decay , 1984 .
[18] N. Hitchin,et al. The Many Facets of Geometry: A Tribute to Nigel Hitchin , 2010 .
[19] Tom M. W. Nye. Geometry of calorons , 2001 .
[20] Y. Shnir. Topological and Non-Topological Solitons in Scalar Field Theories , 2018 .
[21] P. Sutcliffe. Skyrmions in a truncated BPS theory , 2011, 1101.2402.
[22] Skyrmions, fullerenes and rational maps , 2001, hep-th/0103026.
[23] D. Fairlie,et al. Scalar field theory and exact solutions to a classical SU (2) gauge theory , 1977 .
[24] S. Sugimoto,et al. Low energy hadron physics in holographic QCD , 2004, hep-th/0412141.
[25] A. Nakamula,et al. Magnetically charged calorons with non-trivial holonomy , 2018, Journal of High Energy Physics.
[26] Josh Cork. Symmetric calorons and the rotation map , 2017, Journal of Mathematical Physics.
[27] Thomas Winyard,et al. A consistent two-skyrmion configuration space from instantons , 2021, Journal of High Energy Physics.
[28] C. Sommerfield,et al. Exact Classical Solution for the 't Hooft Monopole and the Julia-Zee Dyon , 1975 .
[29] E. Witten,et al. Static Properties of Nucleons in the Skyrme Model , 1983 .
[30] M. Atiyah,et al. Skyrmions from instantons , 1989 .
[31] D. Tong,et al. Instantons, fermions and Chern-Simons terms , 2008, 0804.1772.
[32] T. Skyrme. A Unified Field Theory of Mesons and Baryons , 1962 .
[33] C. Adam,et al. A Skyrme-type proposal for baryonic matter , 2010, 1001.4544.
[34] P. Baal,et al. Periodic instantons with non-trivial holonomy , 1998, hep-th/9805168.
[35] Josh Cork. Skyrmions from calorons , 2018, Journal of High Energy Physics.
[36] P. Baal,et al. Exact T-duality between calorons and Taub-NUT spaces , 1998, hep-th/9802049.
[37] B. Charbonneau,et al. The Nahm transform for calorons , 2007, 0705.2412.
[38] D. Harland,et al. A point particle model of lightly bound skyrmions , 2016, 1612.05481.
[39] N. Manton. Geometry of Skyrmions , 1987 .
[40] P. Sutcliffe,et al. Skyrmions in models with pions and rho mesons , 2018, 1803.06098.
[41] D. H. Tchrakian,et al. Monopoles and dyons in SO(3) gauged Skyrme models , 2001 .