A model for gauged skyrmions with low binding energies

We consider gauged skyrmions with boundary conditions which break the gauge from SU(2) to U(1) in models derived from Yang–Mills theory. After deriving general topological energy bounds, we approximate charge 1 energy minimisers using KvBLL calorons with non-trivial asymptotic holonomy, use them to calibrate the model to optimise the ratio of energy to lower bound, and compare them with solutions to full numerical simulation. Skyrmions from calorons with non-trivial asymptotic holonomy exhibit a non-zero magnetic dipole moment, which we calculate explicitly, and compare with experimental values for the proton and the neutron. We thus propose a way to develop a physically realistic Skyrme–Maxwell theory, with the potential for exhibiting low binding energies.

[1]  G. Brown,et al.  The Multifaceted Skyrmion , 2009, 0907.1963.

[2]  D. Harland,et al.  Skyrmions with low binding energies , 2015, 1501.05455.

[3]  D. Harland,et al.  On the charge density and asymptotic tail of a monopole , 2015, 1508.03232.

[4]  P. Sutcliffe Skyrmions, instantons and holography , 2010, 1003.0023.

[5]  Solitonic fullerene structures in light atomic nuclei. , 2000, Physical review letters.

[6]  M. Atiyah,et al.  Geometry and kinematics of two Skyrmions , 1993 .

[7]  Changhai Lu,et al.  SU(2) calorons and magnetic monopoles , 1998, hep-th/9802108.

[8]  D. H. Tchrakian,et al.  Solitons/instantons in d -dimensional ? gauged ? Skyrme models , 1998 .

[9]  H. Shepard,et al.  Periodic Euclidean Solutions and the Finite Temperature Yang-Mills Gas , 1978 .

[10]  J. Hurtubise The asymptotic Higgs field of a monopole , 1985 .

[11]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[12]  E. Farhi,et al.  Decoupling a fermion in the standard electro-weak theory , 1984 .

[13]  C. Adam,et al.  The dielectric Skyrme model , 2020, Physics Letters B.

[14]  P. Sutcliffe,et al.  Skyrmions and Clustering in Light Nuclei. , 2018, Physical review letters.

[15]  D. Harland Topological energy bounds for the Skyrme and Faddeev models with massive pions , 2013, 1311.2403.

[16]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[17]  C. Callan,et al.  Monopole Catalysis of Skyrmion Decay , 1984 .

[18]  N. Hitchin,et al.  The Many Facets of Geometry: A Tribute to Nigel Hitchin , 2010 .

[19]  Tom M. W. Nye Geometry of calorons , 2001 .

[20]  Y. Shnir Topological and Non-Topological Solitons in Scalar Field Theories , 2018 .

[21]  P. Sutcliffe Skyrmions in a truncated BPS theory , 2011, 1101.2402.

[22]  Skyrmions, fullerenes and rational maps , 2001, hep-th/0103026.

[23]  D. Fairlie,et al.  Scalar field theory and exact solutions to a classical SU (2) gauge theory , 1977 .

[24]  S. Sugimoto,et al.  Low energy hadron physics in holographic QCD , 2004, hep-th/0412141.

[25]  A. Nakamula,et al.  Magnetically charged calorons with non-trivial holonomy , 2018, Journal of High Energy Physics.

[26]  Josh Cork Symmetric calorons and the rotation map , 2017, Journal of Mathematical Physics.

[27]  Thomas Winyard,et al.  A consistent two-skyrmion configuration space from instantons , 2021, Journal of High Energy Physics.

[28]  C. Sommerfield,et al.  Exact Classical Solution for the 't Hooft Monopole and the Julia-Zee Dyon , 1975 .

[29]  E. Witten,et al.  Static Properties of Nucleons in the Skyrme Model , 1983 .

[30]  M. Atiyah,et al.  Skyrmions from instantons , 1989 .

[31]  D. Tong,et al.  Instantons, fermions and Chern-Simons terms , 2008, 0804.1772.

[32]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .

[33]  C. Adam,et al.  A Skyrme-type proposal for baryonic matter , 2010, 1001.4544.

[34]  P. Baal,et al.  Periodic instantons with non-trivial holonomy , 1998, hep-th/9805168.

[35]  Josh Cork Skyrmions from calorons , 2018, Journal of High Energy Physics.

[36]  P. Baal,et al.  Exact T-duality between calorons and Taub-NUT spaces , 1998, hep-th/9802049.

[37]  B. Charbonneau,et al.  The Nahm transform for calorons , 2007, 0705.2412.

[38]  D. Harland,et al.  A point particle model of lightly bound skyrmions , 2016, 1612.05481.

[39]  N. Manton Geometry of Skyrmions , 1987 .

[40]  P. Sutcliffe,et al.  Skyrmions in models with pions and rho mesons , 2018, 1803.06098.

[41]  D. H. Tchrakian,et al.  Monopoles and dyons in SO(3) gauged Skyrme models , 2001 .