Capillary Flow in Containers of Polygonal Section

An improved understanding of the large-length-scale capillary flows arising in a low-gravity environment is critical to that engineering community concerned with the design and analysis of spacecraft fluids management systems. Because a significant portion of liquid behavior in spacecraft is capillary dominated, it is natural to consider designs that best exploit the spontaneous character of such flows. In the present work a recently verified asymptotic analysis is extended to approximate spontaneous capillary flows in a large class of cylindrical containers of irregular polygonal section experiencing a step reduction in gravitational acceleration. Drop tower tests are conducted using partially filled irregular triangular containers for comparison with the theoretical predictions. The degree to which the experimental data agree with the theory is a testament to the robustness of the basic analytical assumption of predominantly parallel flow. As a result, the closed-form analytical expressions presented serve as simple, accurate tools for predicting bulk flow characteristics essential to practical low-g system design and analysis