Two-copy quantum teleportation based on GHZ measurement

We investigate quantum teleportation in the two-copy setting based on GHZ measurement and propose the detailed protocol. The output state after the teleportation is analyzed, and the protocol is proved to be trace preserving. The general expression of the optimal teleportation fidelity is derived. The optimal teleportation fidelity is shown to be a linear function of two-copy fully entangled fraction, which is invariant under local unitary transformations. At last, we show two-copy teleportation based on GHZ measurement can be better than one-copy teleportation by an explicit example, which is amenable to demonstration in experiments. Our study is significant for improving the fidelity of teleportation for some limited resource which cannot be significantly distilled. Moreover, it can inspire us to find many other more efficient protocols for teleportation.

[1]  Satyabrata Adhikari,et al.  Entanglement witness operator for quantum teleportation. , 2011, Physical review letters.

[2]  J. Grondalski,et al.  The fully entangled fraction as an inclusive measure of entanglement applications , 2002 .

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[4]  S. Fei,et al.  A note on fully entangled fraction , 2010, 1006.3502.

[5]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[6]  G. D’Ariano,et al.  Bell measurements and observables , 2000, quant-ph/0005121.

[7]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[8]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[10]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[11]  S. Fei,et al.  Upper bound of the fully entangled fraction , 2008, 0810.0869.

[12]  Paul Skrzypczyk,et al.  All Entangled States can Demonstrate Nonclassical Teleportation. , 2016, Physical review letters.

[13]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[14]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[15]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[17]  S. Fei,et al.  Complete entanglement witness for quantum teleportation , 2012, 1205.0771.

[18]  Shao-Ming Fei,et al.  Two-copy Quantum Teleportation , 2015, Scientific Reports.

[19]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[20]  Teleportation with an Arbitrary Mixed Resource as a Trace-Preserving Quantum Channel , 2002 .

[21]  M. Horodecki,et al.  Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.

[22]  Daniel Cavalcanti,et al.  All quantum states useful for teleportation are nonlocal resources , 2012, 1207.5485.

[23]  Sergio Albeverio,et al.  Optimal teleportation based on bell measurements , 2002, quant-ph/0208015.

[24]  M. Horodecki,et al.  Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .

[25]  G. Bowen,et al.  Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. , 2001, Physical review letters.

[26]  S. Fei,et al.  On Estimation of Fully Entangled Fraction , 2010 .

[27]  N. Brunner,et al.  Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement , 2014, Nature Communications.