Conditional limit theorems for queues with Gaussian input, a weak convergence approach
暂无分享,去创建一个
[1] T. Kurtz. Limit theorems for workload input models , 2000 .
[2] K. Majewski. Large deviations for multi-dimensional reflected fractional Brownian motion , 2003 .
[3] R. Adler. RANDOM FIELDS AND THEIR GEOMETRY , 2003 .
[4] Krzysztof Debicki,et al. A Note on Transient Gaussian Fluid Models , 2002, Queueing Syst. Theory Appl..
[5] Ilkka Norros. Busy periods of fractional Brownian storage: a large deviations approach , 1999 .
[6] G. Hooghiemstra. Conditioned limit theorems for waiting-time processes of the M/G/1 queue , 1983 .
[7] H. Zanten,et al. Donsker theorems for diffusions: Necessary and sufficient conditions , 2005, math/0507412.
[8] R. Adler. An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .
[9] A. P. Zwart,et al. The supremum of a Gaussian process over a random interval , 2002 .
[10] S. Asmussen. Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the GI/G/ 1 queue , 1982 .
[11] F. Kelly,et al. Stochastic networks : theory and applications , 1996 .
[12] Peng Yan,et al. Exact asymptotics for a queue with fractional Brownian input and applications in ATM networks , 2001, Journal of Applied Probability.
[13] O. Gaans. Probability measures on metric spaces , 2022 .
[14] Søren Asmussen,et al. Ruin probabilities , 2001, Advanced series on statistical science and applied probability.
[15] Tommi Sottinen,et al. Path Space Large Deviations of a Large Buffer with Gaussian Input Traffic , 2002, Queueing Syst. Theory Appl..
[16] Tomasz Rolski,et al. On the supremum from gaussian processes over infinite horizon , 1998 .
[17] J. Geluk. Π-regular variation , 1981 .
[18] M. Mandjes,et al. Large deviations of infinite intersections of events in Gaussian processes , 2006 .
[19] Simone Chevet. Gaussian measures and large deviations , 1983 .
[20] Nick Duffield,et al. Large deviations and overflow probabilities for the general single-server queue, with applications , 1995 .
[21] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[22] J. Lamperti. Semi-stable stochastic processes , 1962 .
[23] Venkat Anantharam,et al. How large delays build up in a GI/G/1 queue , 1989, Queueing Syst. Theory Appl..
[24] A. B. Dieker,et al. Extremes of Gaussian processes over an infinite horizon , 2005 .
[25] Walter Willinger,et al. Proof of a fundamental result in self-similar traffic modeling , 1997, CCRV.
[26] M. Lifshits. Gaussian Random Functions , 1995 .
[27] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[28] Jean Bertoin,et al. On conditioning a random walk to stay nonnegative , 1994 .
[29] Krzysztof Dȩbicki. A note on LDP for supremum of Gaussian processes over infinite horizon , 1999 .
[30] Ilkka Norros,et al. Most probable paths and performance formulae for buffers with gaussian input traffic , 2002, Eur. Trans. Telecommun..