Translational Maneuvering Control of Nonholonomic Kinematic Formations: Theory and Experiments

In this work, we present a solution to the distance-based formation maneuvering problem of multiple nonholo-nomic unicycle-type robots. The control law is designed at the kinematic level and is based on the rigidity properties of the graph modeling the sensing/control interactions among the robots. A simple input transformation is used to facilitate the control design by converting the nonholonomic model into the single-integrator equation. The resulting control ensures exponential convergence to the desired formation while the formation maneuvers according to a desired, time-varying translational velocity. An experimental implementation of the proposed control law is conducted on the Robotarium testbed.

[1]  Nathan Michael,et al.  Vision-Based, Distributed Control Laws for Motion Coordination of Nonholonomic Robots , 2009, IEEE Transactions on Robotics.

[2]  Jay A. Farrell,et al.  Cooperative Control of Multiple Nonholonomic Mobile Agents , 2008, IEEE Transactions on Automatic Control.

[3]  B. Jackson Notes on the Rigidity of Graphs , 2007 .

[4]  Zhiyong Sun,et al.  Rigid formation control of double-integrator systems , 2017, Int. J. Control.

[5]  Li Wang,et al.  The Robotarium: A remotely accessible swarm robotics research testbed , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Li Wang,et al.  Safe, Remote-Access Swarm Robotics Research on the Robotarium , 2016, ArXiv.

[7]  Shaoshuai Mou,et al.  Finite time distributed distance‐constrained shape stabilization and flocking control for d‐dimensional undirected rigid formations , 2016 .

[8]  Guangfu Ma,et al.  Distributed Coordinated Tracking With a Dynamic Leader for Multiple Euler-Lagrange Systems , 2011, IEEE Transactions on Automatic Control.

[9]  Baris Fidan,et al.  A Target Tracking Approach for Nonholonomic Agents Based on Artificial Potentials and Sliding Mode Control , 2012 .

[10]  Zhihong Man,et al.  Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems , 2009, IEEE/ASME Transactions on Mechatronics.

[11]  R. Ordonez,et al.  Swarm Tracking Using Artificial Potentials and Sliding Mode Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[12]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[13]  Zhiyong Sun,et al.  A General Approach to Coordination Control of Mobile Agents With Motion Constraints , 2018, IEEE Transactions on Automatic Control.

[14]  Florian Dörfler,et al.  Geometric Analysis of the Formation Problem for Autonomous Robots , 2010, IEEE Transactions on Automatic Control.

[15]  Lili Wang,et al.  Formation Control With Size Scaling Via a Complex Laplacian-Based Approach , 2016, IEEE Transactions on Cybernetics.

[16]  Karl H. Johansson,et al.  Further results on the stability of distance-based multi-robot formations , 2009, 2009 American Control Conference.

[17]  Ming Cao,et al.  Distributed Rotational and Translational Maneuvering of Rigid Formations and Their Applications , 2016, IEEE Transactions on Robotics.

[18]  Ivan Izmestiev INFINITESIMAL RIGIDITY OF FRAMEWORKS AND SURFACES , 2009 .

[19]  Marcio de Queiroz,et al.  Rigidity-Based Stabilization of Multi-Agent Formations , 2014 .

[20]  Marcio de Queiroz,et al.  Dynamic Formation Control of Multi-Agent Systems Using Rigid Graphs , 2014 .

[21]  Ho-Hoon Lee,et al.  Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints , 2006, 2006 American Control Conference.

[22]  Ziyang Meng,et al.  Distributed Containment Control for Multiple Autonomous Vehicles With Double-Integrator Dynamics: Algorithms and Experiments , 2011, IEEE Transactions on Control Systems Technology.

[23]  Marcio de Queiroz,et al.  Adaptive Rigidity-Based Formation Control for Multirobotic Vehicles With Dynamics , 2015, IEEE Transactions on Control Systems Technology.

[24]  Tyler H. Summers,et al.  Control of Minimally Persistent Leader-Remote-Follower and Coleader Formations in the Plane , 2011, IEEE Transactions on Automatic Control.

[25]  M. S. de Queiroz,et al.  Formation Maneuvering Control of Nonholonomic Multi-Agent Systems , 2016 .

[26]  Jay A. Farrell,et al.  Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty , 2009, Autom..

[27]  Brian D. O. Anderson,et al.  Combined Flocking and Distance-Based Shape Control of Multi-Agent Formations , 2016, IEEE Transactions on Automatic Control.

[28]  J.T. Wen,et al.  Using orientation agreement to achieve planar rigid formation , 2008, 2008 American Control Conference.

[29]  Romeo Ortega,et al.  Globally stable adaptive formation control of Euler-Lagrange agents via potential functions , 2009, 2009 American Control Conference.

[30]  Mireille E. Broucke,et al.  Stabilization of infinitesimally rigid formations of multi-robot networks , 2008, 2008 47th IEEE Conference on Decision and Control.

[31]  Dusan M. Stipanovic,et al.  Formation Control and Collision Avoidance for Multi-agent Non-holonomic Systems: Theory and Experiments , 2008, Int. J. Robotics Res..

[32]  Frank L. Lewis,et al.  Distributed Adaptive Tracking Control for Synchronization of Unknown Networked Lagrangian Systems , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[34]  Brian D. O. Anderson,et al.  A Theory of Network Localization , 2006, IEEE Transactions on Mobile Computing.

[35]  Roger Skjetne,et al.  Formation control of fully-actuated marine vessels using group agreement protocols , 2011, IEEE Conference on Decision and Control and European Control Conference.

[36]  Perry Y. Li,et al.  Passive Decomposition Approach to Formation and Maneuver Control of Multiple Rigid Bodies , 2007 .

[37]  Nathan van de Wouw,et al.  Distributed formation control of unicycle robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[38]  Panagiotis Tsiotras,et al.  Controllers for unicycle-type wheeled robots: Theoretical results and experimental validation , 2002, IEEE Trans. Robotics Autom..

[39]  Soon-Jo Chung,et al.  Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems , 2007, IEEE Transactions on Robotics.

[40]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[41]  Marcio de Queiroz,et al.  Formation Maneuvering and Target Interception for Multi‐Agent Systems via Rigid Graphs , 2015 .

[42]  Jian Chen,et al.  Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme , 2010, Int. J. Robotics Res..

[43]  P. Olver Nonlinear Systems , 2013 .

[44]  Shiyu Zhao,et al.  A proportional-integral controller for distance-based formation tracking , 2015, 2015 European Control Conference (ECC).

[45]  J. Hendrickx,et al.  Rigid graph control architectures for autonomous formations , 2008, IEEE Control Systems.

[46]  John Baillieul,et al.  Information patterns and Hedging Brockett's theorem in controlling vehicle formations , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[47]  Mireille E. Broucke,et al.  Stabilisation of infinitesimally rigid formations of multi-robot networks , 2009, Int. J. Control.

[48]  Marcio de Queiroz,et al.  Multi-agent formation maneuvering and target interception with double-integrator model , 2014, 2014 American Control Conference.