Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors

The potential diagram for field-effect transistors used to detect charged biological macromolecules in an electrolyte is presented for the case where an insulating cover layer is used over a conventional eletrolyte-insulator metal-oxide-semiconductor (EIMOS) structure to tether or bind the biological molecules to a floating gate. The layer of macromolecules is modeled using the Poisson-Boltzmann equation for an ion-permeable membrane. Expressions are derived for the charges and potentials in the EIMOS and electrolyte-insulator-semiconductor structures, including the membrane and electrolyte. Exact solutions for the potentials and charges are calculated using numerical algorithms. Simple expressions for the response are presented for low solution potentials when the Donnan potential is approached in the bulk of the membrane. The implications of the model for the small-signal equivalent circuit and the noise analysis of these structures are discussed.

[1]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[2]  Gerard Ghibaudo,et al.  Improved Analysis of Low Frequency Noise in Field‐Effect MOS Transistors , 1991 .

[3]  Gérard Ghibaudo,et al.  Electrical noise and RTS fluctuations in advanced CMOS devices , 2002, Microelectron. Reliab..

[4]  W. Göpel,et al.  Zeta potential measurements of Ta2O5 and SiO2 thin films , 1991 .

[5]  T. Vo‐Dinh,et al.  Biosensors and biochips: advances in biological and medical diagnostics , 2000, Fresenius' journal of analytical chemistry.

[6]  E. Souteyrand,et al.  DIRECT DETECTION OF THE HYBRIDIZATION OF SYNTHETIC HOMO-OLIGOMER DNA SEQUENCES BY FIELD EFFECT , 1997 .

[7]  W. Ko,et al.  A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[8]  C. Hu,et al.  A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors , 1990 .

[9]  P Bergveld,et al.  A critical evaluation of direct electrical protein detection methods. , 1991, Biosensors & bioelectronics.

[10]  D. W. van der Weide,et al.  Direct electrical detection of hybridization at DNA-modified silicon surfaces. , 2004, Biosensors & bioelectronics.

[11]  R. Dutton,et al.  Comprehensive study of noise processes in electrode electrolyte interfaces , 2004 .

[12]  Motohiko Tanaka,et al.  DNA in nanopores: counterion condensation and coion depletion. , 2004, Physical review letters.

[13]  Jang-Kyoo Shin,et al.  Field Effect Transistor-based Bimolecular Sensor Employing a Pt Reference Electrode for the Detection of Deoxyribonucleic Acid Sequence , 2004 .

[14]  R. Boukherroub,et al.  Formation, characterization, and chemistry of undecanoic acid-terminated silicon surfaces: patterning and immobilization of DNA. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  P. Bergveld,et al.  Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface , 1983, IEEE Transactions on Electron Devices.

[16]  Max J. Schulz,et al.  Insulating Films on Semiconductors , 1981 .

[17]  R. Kingston,et al.  Semiconductor surface physics , 1957 .

[18]  Denise M. Wilson,et al.  Chemical sensors for portable, handheld field instruments , 2001 .

[19]  P. Estrela,et al.  Electrical detection of biomolecular interactions with metal-insulator-semiconductor diodes. , 2005, Biosensors & bioelectronics.

[20]  I. Lundström,et al.  Low frequency noise in MOS transistors—I Theory , 1968 .

[21]  K. Breslauer,et al.  Characterization of the minor groove environment in a drug-DNA complex: bisbenzimide bound to the poly[d(AT)].poly[d(AT)]duplex. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Charles G. Sodini,et al.  A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon , 1989 .

[23]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[24]  J. Duval,et al.  Amphifunctionally Electrified Interfaces: Coupling of Electronic and Ionic Surface-Charging Processes , 2001 .

[25]  F. Uslu,et al.  Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. , 2004, Biosensors & bioelectronics.

[26]  G. Gouy Sur la fonction électrocapillaire , 1916 .

[27]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[28]  G. Reimbold,et al.  Modified 1/f trapping noise theory and experiments in MOS transistors biased from weak to strong inversion—Influence of interface states , 1984, IEEE Transactions on Electron Devices.

[29]  Robert H. Kingston,et al.  Calculation of the Space Charge, Electric Field, and Free Carrier Concentration at the Surface of a Semiconductor , 1955 .

[30]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[31]  Gerard Ghibaudo,et al.  On the theory of carrier number fluctuations in MOS devices , 1989 .

[32]  Ralph E. White,et al.  Comprehensive Treatise of Electrochemistry , 1981 .

[33]  R. Parsons Modern Aspects of Electrochemistry , 1985 .

[34]  T. Kondo,et al.  Double-layer interaction regulated by the donnan potential , 1988 .

[35]  J. Kleijn,et al.  The electrical double layer on gold probed by electrokinetic and surface force measurements. , 2002, Journal of colloid and interface science.

[36]  K. Hayes,et al.  Geochemical processes at mineral surfaces , 1987 .

[37]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[38]  L. Bousse Single electrode potentials related to flat‐band voltage measurements on EOS and MOS structures , 1982 .

[39]  P. Sorger,et al.  Electronic detection of DNA by its intrinsic molecular charge , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.