Multiscale descriptors and metric learning for human body shape retrieval

The aim of this paper was to show the usefulness of applying feature projection or metric learning techniques to multiscale descriptor spaces for the effective retrieval of human bodies of labeled subjects. Using learned subspace projections it is possible to strongly improve the retrieval performance obtained with state-of-the-art global descriptors, and, in some cases, to perform an effective feature fusion. Results obtained on different human scan datasets show that Linear Discriminant Analysis, applied to Histograms of Area Projection Transform and Shape DNA features after a preliminary dimensionality reduction, creates compact descriptors that are quite effective in improving the subject retrieval scores both when class (subject) examples are available in the training set and when only examples of classes not included in the test set are used for training. Other mappings tested are less effective even if still able to improve the results. Retrieval scores obtained in the same experimental settings used in recent related papers show that the approach based on our mapped features largely outperforms the other methods proposed for the task, even those specifically designed for human body characterization.

[1]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[2]  Ron Meir,et al.  Semantic-oriented 3d shape retrieval using relevance feedback , 2005, The Visual Computer.

[3]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[4]  Alexander M. Bronstein,et al.  Supervised learning of bag‐of‐features shape descriptors using sparse coding , 2014, Comput. Graph. Forum.

[5]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[6]  Yun Fu,et al.  Multiple feature fusion by subspace learning , 2008, CIVR '08.

[7]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[8]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[9]  Andrea Giachetti,et al.  Radial Symmetry Detection and Shape Characterization with the Multiscale Area Projection Transform , 2012, Comput. Graph. Forum.

[10]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[12]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[13]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[14]  Iasonas Kokkinos,et al.  SHREC'10 Track: Robust Shape Retrieval , 2010, 3DOR@Eurographics.

[15]  Jiangping Wang,et al.  BodyPrint: Pose Invariant 3D Shape Matching of Human Bodies , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[17]  Bo Li,et al.  Shape Retrieval of Non-Rigid 3D Human Models , 2014, 3DOR@Eurographics.

[18]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[20]  Bangjun Lei,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB, 2nd Edition , 2017 .

[21]  Vincent Barra,et al.  3D shape retrieval using Kernels on Extended Reeb Graphs , 2013, Pattern Recognit..

[22]  Afzal Godil,et al.  Non-rigid 3D shape retrieval using Multidimensional Scaling and Bag-of-Features , 2010, 2010 IEEE International Conference on Image Processing.

[23]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[24]  Ryutarou Ohbuchi,et al.  Distance metric learning and feature combination for shape-based 3D model retrieval , 2010, 3DOR '10.

[25]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[26]  Giuseppe Patanè,et al.  Feature Selection for Enhanced Spectral Shape Comparison , 2010, 3DOR@Eurographics.

[27]  Amir Globerson,et al.  Metric Learning by Collapsing Classes , 2005, NIPS.

[28]  Ioannis Pratikakis,et al.  Non-rigid 3D object retrieval using topological information guided by conformal factors , 2012, The Visual Computer.

[29]  Andrea Giachetti,et al.  Retrieval and Classification on Textured 3D Models , 2014, 3DOR@Eurographics.

[30]  Ralph R. Martin,et al.  Non-rigid 3D Shape Retrieval , 2015, 3DOR@Eurographics.