Understanding the electronic reorganization in the thermal isomerization reaction of trans‐3,4‐dimethylcyclobutene. Origins of outward Pseudodiradical {2n + 2π} torquoselectivity

The thermal isomerization reaction of trans-3,4-dimethylcyclobutene (1,2,3,4-DMC) to produce the isomer (2E, 4E)-hexadiene have been studied using density functional theory at the B3LYP/6-31+G level. For this reaction, two different channels of the conrotatory torquoselectivity allowing the formation of the two isomeric (E,E) and (Z,Z) have been characterized. The isomer (Z,Z) occurs through the inward conrotatory mechanism, whereas the isomer (E,E) occurs through the outward conrotatory mechanism. The outward conrotatory is favored by 11.3 kcal/mol with respect to inward conrotatory one. This behavior is consistent with the thermodynamic properties: enthalpy, free energy, and entropy calculated in both reaction pathways. The topological analysis of the electron localization function at the outward conrotatory transition state explicated the electronic reorganization through a pseudodiradical {2n + 2π} process and not a pericyclic reorganization. © 2012 Wiley Periodicals, Inc.

[1]  Kendall N. Houk,et al.  Electronic Control of Stereoselectivities of Electrocyclic Reactions of Cyclobutenes: A Triumph of Theory in the Prediction of Organic Reactions , 1996 .

[2]  A. Vidal,et al.  Tandem pseudopericyclic reactions: [1,5]-X sigmatropic shift/6pi-electrocyclic ring closure converting N-(2-X-carbonyl)phenyl ketenimines into 2-X-quinolin-4(3H)-ones. , 2006, The Journal of organic chemistry.

[3]  Bernard Silvi,et al.  Computational Tools for the Electron Localization Function Topological Analysis , 1999, Comput. Chem..

[4]  M. Ramezanian,et al.  A New azacyanocarbon, C4N4: tricyanomethanimine , 1988 .

[5]  J. Baldwin,et al.  New Stereochemical Selectivities in Electrocyclic Reactions , 1967 .

[6]  S. Sakai,et al.  Theoretical Studies of the Electrocyclic Reaction Mechanisms of Hexatriene to Cyclohexadiene , 1999 .

[7]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[8]  Juan Andrés,et al.  The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels-Alder reaction between ethylene and 1,3-butadiene , 2003 .

[9]  S. Sakai Theoretical studies on the electrocyclic reaction mechanisms for s- cis butadiene and disilylbutadiene 1 Dedicated to Professor Keiji Morokuma in celebration of his 65th birthday. 1 , 1999 .

[10]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[11]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[12]  L. Domingo,et al.  Describing the Molecular Mechanism of Organic Reactions by Using Topological Analysis of Electronic Localization Function , 2011 .

[13]  Kendall N. Houk,et al.  Theory of stereoselection in conrotatory electrocyclic reactions of substituted cyclobutenes , 1985 .

[14]  K. Fukui Formulation of the reaction coordinate , 1970 .

[15]  E. Chamorro,et al.  Nature of Bonding in the Thermal Cyclization of (Z)-1,2,4,6-Heptatetraene and Its Heterosubstituted Analogues , 2004 .

[16]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[17]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[18]  Andreas Savin,et al.  Topological analysis of the electron localization function applied to delocalized bonds , 1996 .

[19]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[20]  K. Laidler,et al.  Development of transition-state theory , 1983 .

[21]  B. Silvi The synaptic order: a key concept to understand multicenter bonding , 2002 .

[22]  K. Houk,et al.  Altering the allowed/forbidden gap in cyclobutene electrocyclic reactions: experimental and theoretical evaluations of the effect of planarity constraints. , 2003, Journal of the American Chemical Society.

[23]  Miquel Solà,et al.  Electron localization function at the correlated level. , 2006, The Journal of chemical physics.

[24]  H. Eyring The Activated Complex and the Absolute Rate of Chemical Reactions. , 1935 .

[25]  E. Vogel Über die Stabilität des ungesättigten Kohlenstoff‐Vierringes , 1954 .

[26]  K. B. Wiberg,et al.  Thermal rearrangement of tricyclo[4.1.0.02,7]heptane☆ , 1968 .

[27]  R. Bader,et al.  Quantum topology. IV. Relation between the topological and energetic stabilities of molecular structures , 1981 .

[28]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[29]  Roald Hoffmann,et al.  Stereochemistry of Electrocyclic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[30]  K N Houk,et al.  Origins of inward torquoselectivity by silyl groups and other sigma-acceptors in electrocyclic reactions of cyclobutenes. , 2003, Journal of the American Chemical Society.

[31]  D. Seebach,et al.  Valenzisomerisierungen von Cyclobutenen , 1965 .

[32]  H. C. Longuet-Higgins,et al.  The Electronic Mechanism of Electrocyclic Reactions , 1965 .

[33]  Kendall N. Houk,et al.  Stereoselective substituent effects on conrotatory electrocyclic reactions of cyclobutenes , 1984 .

[34]  Miquel Solà,et al.  Electron Localization Function at the Correlated Level: A Natural Orbital Formulation. , 2010, Journal of chemical theory and computation.

[35]  K. Houk,et al.  Substituent Effects on Torquoselectivity. Computational Investigations of the Thermal Ring Openings of Cyclobutenes Fused to Substituted Cyclohexenes , 1995 .

[36]  Bernard Silvi,et al.  CHARACTERIZATION OF ELEMENTARY CHEMICAL PROCESSES BY CATASTROPHE THEORY , 1997 .

[37]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[38]  F. Weinhold,et al.  Natural population analysis , 1985 .

[39]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[40]  J. Cioslowski,et al.  Nonnuclear attractors in the lithium dimeric molecule , 1990 .