Complexity classication of some edge modication problems

In an edge modication problem one has to change the edge set of a given graph as little as possible so as to satisfy a certain property. We prove the NP-hardness of a variety of edge modication problems with respect to some well-studied classes of graphs. These include per- fect, chordal, chain, comparability, split and asteroidal triple free. We show that some of these problems become polynomial when the input graph has bounded degree. We also give a general constant factor approximation algorithm for deletion and editing problems on bounded degree graphs with respect to properties that can be characterized by anite set of forbidden induced subgraphs. ? 2001 Elsevier Science B.V. All rights reserved.

[1]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[2]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[5]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[6]  Peter L. Hammer,et al.  The splittance of a graph , 1981, Comb..

[7]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[8]  Toshihide Ibaraki,et al.  Threshold Numbers and Threshold Completions , 1981 .

[9]  Takao Asano,et al.  Edge-deletion and edge-contraction problems , 1982, STOC '82.

[10]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[11]  Béla Bollobás,et al.  Random Graphs , 1985 .

[12]  Takao Asano An Application of Duality to Edge-Deletion Problems , 1987, SIAM J. Comput..

[13]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[14]  Charles J. Colbourn,et al.  The complexity of some edge deletion problems , 1988 .

[15]  R. Ravi,et al.  Ordering Problems Approximated: Single-Processor Scheduling and Interval Graph Completion , 1991, ICALP.

[16]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[17]  Philip N. Klein,et al.  Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings , 1993 .

[18]  Carsten Lund,et al.  The Approximation of Maximum Subgraph Problems , 1993, ICALP.

[19]  François Margot,et al.  Some Complexity Results about Threshold Graphs , 1994, Discret. Appl. Math..

[20]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[21]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[23]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[24]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[25]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[26]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[27]  Haim Kaplan,et al.  Physical Maps and Interval Sandwich Problems: Bounded Degrees Help , 1996, ISTCS.

[28]  Hans L. Bodlaender,et al.  On Intervalizing K-colored Graphs for DNA Physical Mapping , 1996, Discret. Appl. Math..

[29]  Johan Håstad,et al.  Some optimal inapproximability results , 1997, STOC '97.

[30]  S. Louis Hakimi,et al.  Orienting Graphs to Optimize Reachability , 1997, Inf. Process. Lett..

[31]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..

[32]  S. Muthukrishnan,et al.  Graph Editing to Bipartite Interval Graphs: Exact and Asymtotic Bounds , 1997, FSTTCS.

[33]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[34]  Haim Kaplan,et al.  Bounded Degree Interval Sandwich Problems , 1999, Algorithmica.

[35]  Roded Sharan,et al.  A Polynomial Approximation Algorithm for the Minimum Fill-In Problem , 2000, SIAM J. Comput..