Rigidity, Residues and Duality: Overview and Recent Progress

In this article we explain the theory of rigid residue complexes in commutative algebra and algebraic geometry, summarizing the background, recent results and anticipated future results. Unlike all previous approaches to Grothendieck Duality, the rigid approach concentrates on the construction of rigid residue complexes over rings, and their intricate yet robust properties. The geometrization, i.e. the passage to rigid residue complexes on schemes and Deligne-Mumford (DM) stacks, by gluing, is fairly easy. In the geometric part of the theory, the main results are the Rigid Residue Theorem and the Rigid Duality Theorem for proper maps between schemes, and for tame proper maps between DM stacks.

[1]  Amnon Yekutieli Traces and Differential Operators over Beilinson Completion Algebras , 1995, alg-geom/9502024.

[2]  Amnon Yekutieli Dualizing complexes over noncommutative graded algebras , 1992 .

[3]  Pronilpotent Gerbes Central Extensions of Gerbes , 2022 .

[4]  Rigid Dualizing Complexes Over Commutative Rings , 2006, math/0601654.

[5]  D. Abramovich,et al.  Tame stacks in positive characteristic , 2007, math/0703310.

[6]  Fabio Nironi Grothendieck Duality for Deligne-Mumford Stacks , 2008, 0811.1955.

[7]  M. Hashimoto,et al.  Foundations of Grothendieck Duality for Diagrams of Schemes , 2009 .

[8]  Minseon Shin Derived Categories , 2021, Homological Theory of Representations.

[9]  R. Hartshorne Residues And Duality , 1966 .

[10]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[11]  P. Sastry,et al.  An explicit construction of the Grothendieck residue complex , 1992 .

[12]  L. Avramov,et al.  Reduction of derived Hochschild functors over commutative algebras and schemes , 2009, 0904.4004.

[13]  Brion Bri PERFECT COMPLEXES ON ALGEBRAIC STACKS , 2017 .

[14]  Amnon Neeman,et al.  The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .

[15]  A. Neeman An Improvement on the Base-Change Theorem and the Functor f!\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^!$$\end{ , 2014, Bulletin of the Iranian Mathematical Society.

[16]  M. Bergh Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .

[17]  Rigid complexes via DG algebras , 2006, math/0603733.

[18]  B. Conrad Grothendieck Duality and Base Change , 2001 .

[19]  Amnon Yekutieli The Squaring Operation for Commutative DG Rings , 2014, 1412.4229.