Fluorescent fusion protein knockout mediated by anti-GFP nanobody

[1]  Akihiro Urasaki,et al.  zTrap: zebrafish gene trap and enhancer trap database , 2010, BMC Developmental Biology.

[2]  Tatsuo Fukagawa,et al.  An auxin-based degron system for the rapid depletion of proteins in nonplant cells , 2009, Nature Methods.

[3]  K. Kawakami,et al.  The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. , 2009, Methods.

[4]  S. Schornack,et al.  Protein mislocalization in plant cells using a GFP-binding chromobody. , 2009, The Plant journal : for cell and molecular biology.

[5]  Wei Dong,et al.  Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering , 2009, Proceedings of the National Academy of Sciences.

[6]  Michael Knop,et al.  Efficient protein depletion by genetically controlled deprotection of a dormant N-degron , 2009, Molecular systems biology.

[7]  M. Affolter,et al.  Tip-Cell Migration Controls Stalk-Cell Intercalation during Drosophila Tracheal Tube Elongation , 2008, Current Biology.

[8]  U. K. Laemmli,et al.  The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. , 2008, Molecular cell.

[9]  R. Schuh,et al.  TEV protease-mediated cleavage in Drosophila as a tool to analyze protein functions in living organisms. , 2008, BioTechniques.

[10]  C. Lehner,et al.  Cell-Type-Specific TEV Protease Cleavage Reveals Cohesin Functions in Drosophila Neurons , 2008, Developmental cell.

[11]  M. Cristina Cardoso,et al.  A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins*S , 2008, Molecular & Cellular Proteomics.

[12]  Daryl M. Gohl,et al.  Enhancer Blocking and Transvection at the Drosophila apterous Locus , 2008, Genetics.

[13]  Roger A Hoskins,et al.  The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies , 2007, Genetics.

[14]  R. Hoskins,et al.  Exploring Strategies for Protein Trapping in Drosophila , 2007, Genetics.

[15]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[16]  Heinrich Leonhardt,et al.  Targeting and tracing antigens in live cells with fluorescent nanobodies , 2006, Nature Methods.

[17]  L. Banaszynski,et al.  A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules , 2006, Cell.

[18]  E. Nigg,et al.  HURP Is a Ran-Importin β-Regulated Protein that Stabilizes Kinetochore Microtubules in the Vicinity of Chromosomes , 2006, Current Biology.

[19]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[20]  L. Wyns,et al.  Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. , 2005, Journal of molecular biology.

[21]  Tobias Meyer,et al.  An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways , 2005, Nature Methods.

[22]  Nancy A. Jenkins,et al.  Simple and highly efficient BAC recombineering using galK selection , 2005, Nucleic acids research.

[23]  A. Ciechanover,et al.  N-terminal ubiquitination: more protein substrates join in. , 2004, Trends in cell biology.

[24]  R. Karess,et al.  Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. , 2003, Molecular biology of the cell.

[25]  N. Zheng,et al.  Exploring the functional complexity of cellular proteins by protein knockout , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  X. Morin,et al.  A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Deshaies,et al.  Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Tsukita,et al.  Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. , 2001, Journal of cell science.

[29]  P. Howley,et al.  Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. , 2000, Molecular cell.

[30]  Wayne L. Rickoll,et al.  Multiple Forces Contribute to Cell Sheet Morphogenesis for Dorsal Closure in Drosophila , 2000, The Journal of cell biology.

[31]  Aaron Ciechanover,et al.  The ubiquitin–proteasome pathway: on protein death and cell life , 1998, The EMBO journal.

[32]  G. Struhl,et al.  Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb , 1998, Nature.

[33]  A. Varshavsky,et al.  Heat-inducible degron: a method for constructing temperature-sensitive mutants. , 1994, Science.

[34]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[35]  T. Tabata,et al.  The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. , 1992, Genes & development.

[36]  K. Edwards,et al.  The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. , 1991, Cell.

[37]  A. Wodarz Extraction and immunoblotting of proteins from embryos. , 2008, Methods in molecular biology.

[38]  Lynn Cooley,et al.  Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster , 2004, Nucleic Acids Res..

[39]  D. Kiehart,et al.  Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. , 1993, Genes & development.