Factoring high-degree polynomials over F2 with Niederreiter's algorithm on the IBM SP2

A C implementation of Niederreiter's algorithm for factoring polynomials over F 2 is described. The most time-consuming part of this algorithm, which consists of setting up and solving a certain system of linear equations, is performed in parallel. Once a basis for the solution space is found, all irreducible factors of the polynomial can be extracted by suitable gcd-computations. For this purpose, asymptotically fast polynomial arithmetic algorithms are implemented. These include Karatsuba & Ofman multiplication, Cantor multiplication and Newton inversion. In addition, a new efficient version of the half-gcd algorithm is presented. Sequential run times for the polynomial arithmetic and parallel run times for the factorization are given. A new world record for polynomial factorization over the binary field is set by showing that a pseudo-randomly selected polynomial of degree 300000 can be factored in about 10 hours on 256 nodes of the IBM SP2 at the Cornell Theory Center.