Two-dimensional central-upwind schemes for curvilinear grids and application to gas dynamics with angular momentum

Abstract In this work we present new second order semi-discrete central schemes for systems of hyperbolic conservation laws on curvilinear grids. Our methods generalise the two-dimensional central-upwind schemes developed by Kurganov and Tadmor [A. Kurganov, E. Tadmor, Numer. Methods Partial Differential Equations 18 (2002) 584. [1] ]. In these schemes we account for area and volume changes in the numerical flux functions due to the non-cartesian geometries. In case of vectorial conservation laws we introduce a general prescription of the geometrical source terms valid for various orthogonal curvilinear coordinate systems. The methods are applied to the two-dimensional Euler equations of inviscid gas dynamics with and without angular momentum transport. In the latter case we introduce a new test problem to examine the detailed conservation of specific angular momentum.

[1]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[2]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[3]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[4]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[5]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[6]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[7]  E. Müller,et al.  A conservative second-order difference scheme for curvilinear coordinates. I: Assignment of variables on a staggered grid , 1989 .

[8]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[9]  Michael L. Norman,et al.  2-D Eulerian Hydrodynamics with Fluid Interfaces, Self-Gravity and Rotation , 1986 .

[10]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[11]  Karl-Heinz A. Winkler,et al.  A method for computing selfgravitating gas flows with radiation , 1979 .

[12]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[13]  Randall J. LeVeque,et al.  A wave propagation method for three-dimensional hyperbolic conservation laws , 2000 .

[14]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  C. Hirsch,et al.  Fundamentals of numerical discretization , 1988 .

[16]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[17]  D. Biskamp Computing in Plasma Physics and Astrophysics , 1976 .

[18]  J. Strutt Scientific Papers: Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density , 2009 .

[19]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[20]  C. Hirsch,et al.  Introduction to “Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method” , 1997 .

[21]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for One- and Two-Dimensional Magnetohydrodynamics Equations. II: High-Order SemiDiscrete Schemes , 2006, SIAM J. Sci. Comput..

[22]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[23]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[24]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[25]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[26]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[27]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[28]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[29]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[30]  B. M. Fulk MATH , 1992 .

[31]  Eitan Tadmor,et al.  Non-oscillatory central schemes for one- and two-dimensional MHD equations. II: high-order semi-discrete schemes. , 2006 .

[32]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[33]  M. L. Norman,et al.  A new calculation on rotating protostar collapse , 1980 .

[34]  Michael L. Norman,et al.  Astrophysical radiation hydrodynamics , 1986 .

[35]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..