Markov random fields and images
暂无分享,去创建一个
[1] Donald Geman,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .
[2] Basilis Gidas,et al. Parameter Estimation for Gibbs Distributions from Partially Observed Data , 1992 .
[3] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[4] Stan Z. Li,et al. Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.
[5] Gerhard Winkler,et al. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.
[6] P. Pérez,et al. Multiscale minimization of global energy functions in some visual recovery problems , 1994 .
[7] W. Clem Karl,et al. Efficient multiscale regularization with applications to the computation of optical flow , 1994, IEEE Trans. Image Process..
[8] Donald Geman,et al. Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Charles A. Bouman,et al. Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Fabrice Heitz,et al. Hierarchical statistical models for the fusion of multiresolution image data , 1995, Optics + Photonics.
[11] Anil K. Jain,et al. Markov random fields : theory and application , 1993 .
[12] F. Comets. On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice , 1992 .
[13] Michael J. Black,et al. On the unification of line processes , 1996 .
[14] Charles A. Bouman,et al. A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..
[15] Steffen L. Lauritzen,et al. Graphical models in R , 1996 .
[16] Andrew Blake,et al. Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.
[17] Tomaso Poggio,et al. Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .
[18] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[19] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .
[20] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[21] L. Younes. Parametric Inference for imperfectly observed Gibbsian fields , 1989 .
[22] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .
[23] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[24] L. Younes. Estimation and annealing for Gibbsian fields , 1988 .
[25] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[26] X. Guyon. Champs aléatoires sur un réseau , 1993 .
[27] David Mumford,et al. Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.
[28] B. Gidas,et al. A Variational Method for Estimating the Parameters of MRF from Complete or Incomplete Data , 1993 .
[29] Bernard Chalmond,et al. An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..
[30] Josiane Zerubia,et al. Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..
[31] Goodman,et al. Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.
[32] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[33] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[34] Haluk Derin,et al. Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.