High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

[1]  Arvind Raman,et al.  Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy , 2007 .

[2]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[3]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[4]  Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements. , 2007, The Review of scientific instruments.

[5]  Oleg Gendelman,et al.  Effect of supramolecular structure on polymer nanofibre elasticity. , 2007, Nature nanotechnology.

[6]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[7]  A. Dana,et al.  Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy , 2008 .

[8]  F. Degertekin,et al.  Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip–sample interaction forces , 2008, Nanotechnology.

[9]  Javier Tamayo,et al.  Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy , 1998 .

[10]  Arvind Raman,et al.  Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy , 2005 .

[11]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[12]  Kazushi Yamanaka,et al.  Quantitative material characterization by ultrasonic AFM , 1999 .

[13]  Vladimir V. Tsukruk,et al.  Scanning Probe Microscopy of Polymer Surfaces , 1997 .

[14]  Roger Proksch,et al.  Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy , 2006 .

[15]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[16]  José Antonio Plaza,et al.  Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy , 2006 .

[17]  C. Prater,et al.  Theoretical modelling and implementation of elastic modulus measurement at the nanoscale using atomic force microscope , 2007 .

[18]  S. Magonov,et al.  High-Temperature Atomic Force Microscopy of Normal Alkane C60H122 Films on Graphite , 2003 .

[19]  Hendrik Hölscher,et al.  Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy , 2006 .

[20]  D. Klinov,et al.  True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes , 2004 .

[21]  Robert W. Stark,et al.  Higher harmonics imaging in tapping-mode atomic-force microscopy , 2003 .

[22]  U. Dürig,et al.  Interaction sensing in dynamic force microscopy , 2000 .

[23]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[24]  Martin Stark,et al.  Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction , 2000 .

[25]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  F. D. Schryver,et al.  Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy , 2003 .

[27]  M. Radmacher,et al.  Imaging viscoelasticity by force modulation with the atomic force microscope. , 1993, Biophysical journal.

[28]  Sabine Hild,et al.  The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation , 1997 .

[29]  Olav Solgaard,et al.  Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy , 2008 .

[30]  Cuénot,et al.  Elastic modulus of polypyrrole nanotubes , 2000, Physical review letters.

[31]  Arvind Raman,et al.  Cantilever dynamics in atomic force microscopy , 2008 .

[32]  J. Israelachvili Intermolecular and surface forces , 1985 .

[33]  Robert W. Stark,et al.  Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation , 2000 .

[34]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[35]  Jilin Tang,et al.  Higher harmonic atomic force microscopy: imaging of biological membranes in liquid. , 2007, Physical review letters.

[36]  Amelio,et al.  Quantitative determination of contact stiffness using atomic force acoustic microscopy , 2000, Ultrasonics.

[37]  Time-varying tip-sample force measurements and steady-state dynamics in tapping-mode atomic force microscopy , 2007, 0712.2833.

[38]  Bryan D. Huey,et al.  AFM and Acoustics: Fast, Quantitative Nanomechanical Mapping , 2007 .

[39]  Gheorghe Stan,et al.  Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method , 2006 .

[40]  K. Eitel Compatibility analysis of the LSND evidence and the KARMEN exclusion for oscillations , 1999, hep-ex/9909036.

[41]  F. Degertekin,et al.  A new atomic force microscope probe with force sensing integrated readout and active tip , 2006 .

[42]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[43]  R. Cook,et al.  Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy , 2008, Nanotechnology.

[44]  Tomasz Kowalewski,et al.  Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Darrell H. Reneker,et al.  CHARACTERIZATION OF POLYMER SURFACES WITH ATOMIC FORCE MICROSCOPY , 1997 .

[46]  R. Cook,et al.  Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires , 2007 .

[47]  Arvind Raman,et al.  Inverting amplitude and phase to reconstruct tip–sample interaction forces in tapping mode atomic force microscopy , 2008, Nanotechnology.

[48]  Ricardo Garcia,et al.  Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy , 1996 .

[49]  Andreas Stemmer,et al.  Multifrequency electrostatic force microscopy in the repulsive regime , 2007 .

[50]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .