Periodic Accretion-powered Flares from Colliding EMRIs as TDE Imposters

When a main-sequence star undergoes Roche lobe overflow onto a supermassive black hole (SMBH) in a circular extreme mass ratio inspiral (EMRI), a phase of steady mass transfer ensues. Over millions of years, the binary evolves to a period minimum before reversing course and migrating outward as a brown dwarf. Because the time interval between consecutive EMRIs is comparable to the mass-transfer timescale, the semimajor axes of two consecutive mass-transferring EMRIs will cross on a radial scale of less than a few au. We show that such EMRI crossing events are inevitably accompanied by a series of mildly relativistic, grazing physical collisions between the stars. Each collision strips a small quantity of mass, primarily from the more massive star, which generally increases their radial separation to set up the next collision after a delay of decades to centuries (or longer) set by further gravitational radiation. Depending on the mass of the SMBH, this interaction can result in gas production events of mass , thus powering a quasi-periodic sequence of SMBH accretion-powered flares over a total duration of thousands of years or longer. Although the EMRI rate is 2–3 orders of magnitude lower than the rate of tidal disruption events (TDEs), the ability of a single interacting EMRI pair to produce a large number of luminous flares—and to make more judicious use of the available stellar fuel—could make their observed rate competitive with the TDE rate, enabling them to masquerade as “TDE imposters.” Gas produced by EMRI collisions is easier to circularize than the highly eccentric debris streams produced in TDEs. We predict flares with bolometric luminosities that decay both as power laws shallower than and as decaying exponentials in time. Viscous spreading of the gaseous disks produced by the accumulation of previous mass-stripping events will place a substantial mass of gas on radial scales at the time of a given flare, providing a possible explanation for the “reprocessing blanket” required to explain the unexpectedly high optical luminosities of some candidate TDE flares.

[1]  J. Guillochon,et al.  A Comparison of the X-Ray Emission from Tidal Disruption Events with those of Active Galactic Nuclei , 2017, 1703.06141.

[2]  R. Sari,et al.  Mass loss through the L2 Lagrange point - Application to Main Sequence EMRI , 2017, 1705.01435.

[3]  H. Perets,et al.  Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events , 2017, 1704.06257.

[4]  S. Gezari,et al.  Revisiting Optical Tidal Disruption Events with iPTF16axa , 2017, 1703.01299.

[5]  S. Gezari,et al.  iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy , 2017, 1703.00965.

[6]  S. Rosswog,et al.  Tidal disruptions by rotating black holes : relativistic hydrodynamics with Newtonian codes , 2017, 1701.00303.

[7]  G. Lodato,et al.  Long-term stream evolution in tidal disruption events , 2016, 1608.00970.

[8]  D. Aharon,et al.  THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS , 2016, 1609.01715.

[9]  C. Kochanek Tidal disruption event demographics , 2016 .

[10]  M. Shara,et al.  On the origins of enigmatic stellar populations in Local Group galactic nuclei , 2016, 1608.02944.

[11]  S. Velzen,et al.  DISCOVERY OF TRANSIENT INFRARED EMISSION FROM DUST HEATED BY STELLAR TIDAL DISRUPTION FLARES , 2016, 1605.04304.

[12]  J. Prieto,et al.  ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc , 2016, 1602.01088.

[13]  J. Stone,et al.  IRON OPACITY BUMP CHANGES THE STABILITY AND STRUCTURE OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI , 2016, 1601.06836.

[14]  S. Rosswog,et al.  Magnetohydrodynamical simulations of a deep tidal disruption in general relativity , 2015, 1512.04865.

[15]  Daniel J. Price,et al.  Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events , 2015, 1510.08066.

[16]  R. Narayan,et al.  Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability , 2015, 1509.03168.

[17]  T. Alexander,et al.  STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE , 2015, 1508.01390.

[18]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[19]  B. Metzger,et al.  A bright year for tidal disruptions , 2015, 1506.03453.

[20]  A. Loeb,et al.  Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes , 2015, 1501.05207.

[21]  Daniel J. Price,et al.  Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes , 2015, 1501.04635.

[22]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[23]  D. Kasen,et al.  THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS , 2015, 1510.08454.

[24]  M. Miller,et al.  SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS , 2015, 1507.04333.

[25]  T. Piran,et al.  DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS? , 2015 .

[26]  L. Ho,et al.  A LUMINOUS X-RAY FLARE FROM THE NUCLEUS OF THE DORMANT BULGELESS SPIRAL GALAXY NGC 247 , 2015, 1506.00790.

[27]  D. Grupe,et al.  IC 3599 DID IT AGAIN: A SECOND OUTBURST OF THE X-RAY TRANSIENT SEYFERT 1.9 GALAXY , 2015, 1504.01389.

[28]  P. Evans,et al.  Multiple tidal disruption flares in the active galaxy IC 3599 , 2015, 1502.07184.

[29]  M. Miller,et al.  DISK WINDS AS AN EXPLANATION FOR SLOWLY EVOLVING TEMPERATURES IN TIDAL DISRUPTION EVENTS , 2015, 1502.03284.

[30]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[31]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[32]  A. Tchekhovskoy,et al.  Tidal disruption and magnetic flux capture: powering a jet from a quiescent black hole , 2014, 1410.0366.

[33]  G. Farrar,et al.  MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES , 2014, 1407.6425.

[34]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[35]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[36]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[37]  Columbia,et al.  Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event , 2013, 1301.1982.

[38]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[39]  C. Matzner,et al.  EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS , 2013, 1305.5570.

[40]  R. Sari,et al.  A new rare type of supernovae: hypervelocity stellar collisions at galactic centers , 2013, 1304.7969.

[41]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[42]  A. Loeb,et al.  Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits , 2012, 1210.1333.

[43]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[44]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[45]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[46]  R. Blandford,et al.  Roche Accretion of stars close to massive black holes , 2011, 1110.2614.

[47]  P. Amaro-Seoane,et al.  Tidal disruptions of separated binaries in galactic nuclei , 2011, 1106.1429.

[48]  Nathaniel R. Butler,et al.  PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy , 2011, 1103.0779.

[49]  Brian D. Metzger,et al.  Radio transients from stellar tidal disruption by massive black holes , 2011, 1102.1429.

[50]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[51]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[52]  C. Will,et al.  Testing properties of the Galactic center black hole using stellar orbits , 2009, 0911.4718.

[53]  E. Rossi,et al.  HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM , 2009, 0911.1136.

[54]  J. Faber,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER AND ITS CONSEQUENCES , 2009, 0909.1959.

[55]  O. Blaes,et al.  TURBULENT STRESSES IN LOCAL SIMULATIONS OF RADIATION-DOMINATED ACCRETION DISKS, AND THE POSSIBILITY OF THE LIGHTMAN–EARDLEY INSTABILITY , 2009, 0908.1117.

[56]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[57]  T. Alexander,et al.  DYNAMICAL EVOLUTION OF THE YOUNG STARS IN THE GALACTIC CENTER: N-BODY SIMULATIONS OF THE S-STARS , 2008, 0807.2340.

[58]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[59]  T. Alexander,et al.  Massive Perturber-driven Interactions between Stars and a Massive Black Hole , 2006, astro-ph/0606443.

[60]  S. Komossa,et al.  Tidal disruption of stars by supermassive black holes: Status of observations , 2015, 1505.01093.

[61]  A. Loeb,et al.  Hypervelocity collisions of binary stars at the Galactic Centre , 2006, astro-ph/0609440.

[62]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[63]  M. Miller,et al.  Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events , 2005, astro-ph/0507133.

[64]  T. Alexander,et al.  The Orbital Statistics of Stellar Inspiral and Relaxation near a Massive Black Hole: Characterizing Gravitational Wave Sources , 2005, astro-ph/0503672.

[65]  M. Freitag,et al.  A comprehensive set of simulations of high-velocity collisions between main-sequence stars , 2004, astro-ph/0403621.

[66]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[67]  T. Alexander,et al.  Orbital In-spiral into a Massive Black Hole in a Galactic Center , 2003, astro-ph/0305062.

[68]  P. Ivanov On the formation rate of close binaries consisting of a super‐massive black hole and a white dwarf , 2001, astro-ph/0112317.

[69]  M. Freitag Monte Carlo cluster simulations to determine the rate of compact star inspiralling to a central galactic black hole , 2001 .

[70]  M. Livio,et al.  Tidal Disruption of a Solar-Type Star by a Supermassive Black Hole , 2000, astro-ph/0002499.

[71]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[72]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[73]  A. Loeb,et al.  Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole , 1997, astro-ph/9703079.

[74]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[75]  P. Bender,et al.  Gradual approach to coalescence for compact stars orbiting massive black holes , 1995 .

[76]  W. Brandt,et al.  The unusual X-ray and optical properties of the ultrasoft active galactic nucleus Zwicky 159.034 (RE J1237+264) , 1995, astro-ph/9501108.

[77]  A. King,et al.  Stellar accretion in active galactic nuclei , 1993 .

[78]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[79]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[80]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[81]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[82]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[83]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[84]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[85]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[86]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[87]  L. Cowie,et al.  The interaction between the blast wave of a supernova remnant and interstellar clouds. , 1975 .

[88]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .