Flexoelectric Effect of Ferroelectric Materials and Its Applications

The flexoelectric effect, which exists in all dielectrics, is an electromechanical effect that arises due to the coupling of strain gradients (or electric field gradients) with electric polarization (or mechanical stress). Numerous experimental studies have demonstrated that ferroelectric materials possess a larger flexoelectric coefficient than other dielectric materials; thus, the flexoelectric response becomes significant. In this review, we will first summarize the measurement methods and magnitudes of the flexoelectric coefficients of ferroelectric materials. Theoretical studies of the flexoelectric coefficients of ferroelectric materials will be addressed in this review. The scaling effect, where the flexoelectric effect dramatically increases when reducing the material dimension, will also be discussed. Because of their large electromechanical response and scaling effect, ferroelectric materials offer vast potential for the application of the flexoelectric effect in various physical phenomena, including sensors, actuators, and transducers. Finally, this review will briefly discuss some perspectives on the flexoelectric effect and address some pressing questions that need to be considered to further develop this phenomenon.

[1]  Ya Yang,et al.  Controllable Piezo-flexoelectric Effect in Ferroelectric Ba0.7Sr0.3TiO3 Materials for Harvesting Vibration Energy. , 2022, ACS applied materials & interfaces.

[2]  Can Wang,et al.  Asymmetric Ground States in La$_{0.67}$Sr$_{0.33}$MnO$_3$/BaTiO$_3$ heterostructures Induced by Flexoelectric Bending , 2022, 2207.03297.

[3]  Yue Zheng,et al.  Flexoresponses of Synthetic Antiferromagnetic Systems Hosting Skyrmions. , 2022, Physical review letters.

[4]  Pan Chen,et al.  Thermal-electrical like response in doped sodium bismuth titanate-based ferroelectric ceramics , 2022, Ceramics International.

[5]  L. Marks,et al.  Experimental determination of flexoelectric coefficients in SrTiO3, KTaO3,, 2022, Physical Review Materials.

[6]  Fei Li,et al.  Enhanced Piezoelectric Properties and Improved Property Uniformity in Nd‐Doped PMN‐PT Relaxor Ferroelectric Single Crystals , 2022, Advanced Functional Materials.

[7]  H. Tian,et al.  Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches , 2022, Science.

[8]  R. Zheng,et al.  Interplay of defect dipole and flexoelectricity in linear dielectrics , 2022, Scripta Materialia.

[9]  Shubao Shao,et al.  Quantitative evaluation of energy harvesting capabilities on flexoelectric and piezoelectric materials , 2022, Journal of Applied Physics.

[10]  X. Bai,et al.  Engineering of atomic-scale flexoelectricity at grain boundaries , 2021, Nature communications.

[11]  Long-qing Chen,et al.  Flexoelectric control of physical properties by atomic force microscopy , 2021, Applied Physics Reviews.

[12]  Ming Wu,et al.  Flexoelectric-induced photovoltaic effects and tunable photocurrents in flexible LaFeO3 epitaxial heterostructures , 2021, Journal of Materiomics.

[13]  D. Xue,et al.  Flexoelectricity in compositionally graded Ba1−xSrxTiO3 ceramics , 2021, Journal of Applied Physics.

[14]  Fangping Zhuo,et al.  Mixed Triboelectric and Flexoelectric Charge Transfer at the Nanoscale , 2021, Advanced science.

[15]  Ananthakumar Ramadoss,et al.  Comprehensive Review on Flexoelectric Energy Harvesting Technology: Mechanisms, Device Configurations, and Potential Applications , 2021, ACS Applied Electronic Materials.

[16]  Yiping Wang,et al.  Flexo-photovoltaic effect in MoS2 , 2021, Nature Nanotechnology.

[17]  D. Tian,et al.  Flexoelectric response of ferroelectric ceramics with reduced surface layer effect , 2021 .

[18]  Tingfang Tian,et al.  Local structural heterogeneity induced large flexoelectricity in Sm-doped PMN–PT ceramics , 2021 .

[19]  Zhongjian Wang,et al.  Mechanical Manipulation of Silicon-based Schottky Diodes via Flexoelectricity , 2021 .

[20]  J. Dai,et al.  Oxygen vacancy and photoelectron enhanced flexoelectricity in perovskite SrTiO3 crystal , 2021 .

[21]  M. Guo,et al.  Flexoelectric Thin-Film Photodetectors. , 2021, Nano letters.

[22]  D. Tian,et al.  Thickness dependence of dielectric and piezoelectric properties from the surface layer effect of BaTiO3-based ceramics , 2021 .

[23]  Y. Gong,et al.  Semiconductor flexoelectricity in graphite-doped SrTiO3 ceramics , 2020 .

[24]  D. Tian,et al.  Large Piezoelectriclike Response from Inhomogeneously Deformed Silicon Crystals , 2020 .

[25]  D. Tian,et al.  Flexoelectric response of (1-x)BaTiO3-xSrTiO3 ceramics , 2020, Ceramics International.

[26]  L. You,et al.  Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect , 2020, Nature Communications.

[27]  E. Tsymbal,et al.  Colossal flexoresistance in dielectrics , 2020, Nature Communications.

[28]  Xiaoning Jiang,et al.  Photoflexoelectric effect in halide perovskites , 2020, Nature Materials.

[29]  B.N.J.Persson On the role of flexoelectricity in triboelectricity for randomly rough surfaces , 2019, EPL (Europhysics Letters).

[30]  Long-qing Chen,et al.  Flexoelectricity in solids: Progress, challenges, and perspectives , 2019 .

[31]  Shanming Ke,et al.  Large flexoelectric response in PMN-PT ceramics through composition design , 2019, Applied Physics Letters.

[32]  Pan Chen,et al.  The surface mechanism for the flexoelectric response in sodium bismuth titanate‐based ferroelectric ceramics , 2019, Journal of the American Ceramic Society.

[33]  Pan Chen,et al.  Flexoelectricity in ferroelectric materials , 2019, IET Nanodielectrics.

[34]  Xiaoning Jiang,et al.  Modulating the Electrical Transport in the Two-Dimensional Electron Gas at LaAlO_{3}/SrTiO_{3} Heterostructures by Interfacial Flexoelectricity. , 2019, Physical review letters.

[35]  L. Fei,et al.  Flexoelectric materials and their related applications: A focused review , 2019, Journal of Advanced Ceramics.

[36]  L. Marks,et al.  Does Flexoelectricity Drive Triboelectricity? , 2019, Physical review letters.

[37]  Haosu Luo,et al.  Magnetoelectric response from the enhanced ferromagnetism and flexoelectric response in reduced BiFeO3–based ceramics , 2019, Journal of the European Ceramic Society.

[38]  Pan Chen,et al.  Large Thermal–Electrical Response and Rectifying Conduction Behavior in Asymmetrically Reduced Ferroelectric Ceramics , 2019, ACS Applied Electronic Materials.

[39]  E. Tsymbal,et al.  Enhanced flexoelectricity at reduced dimensions revealed by mechanically tunable quantum tunnelling , 2019, Nature Communications.

[40]  Xi Yao,et al.  Flexoelectric fatigue in (K,Na,Li)(Nb,Sb)O3 ceramics , 2018, Applied Physics Letters.

[41]  D. Tian,et al.  Large Flexoelectriclike Response from the Spontaneously Polarized Surfaces in Ferroelectric Ceramics. , 2018, Physical review letters.

[42]  Haixiong Ge,et al.  Ferroelectric polymer nanostructure with enhanced flexoelectric response for force-induced memory , 2018, Applied Physics Letters.

[43]  S. Shen,et al.  Probing flexoelectricity via a split Hopkinson pressure bar experiment , 2018, Applied Physics Letters.

[44]  Jingfeng Li,et al.  Flexoelectricity in antiferroelectrics , 2018, Applied Physics Letters.

[45]  Yang Zhou,et al.  Flexoelectric effect in PVDF-based copolymers and terpolymers , 2018, Applied Physics Letters.

[46]  Baojin Chu,et al.  Energy harvesting by exploiting the enhanced flexoelectric-like response of reduced (Na 0.5 Bi 0.5 ) 0.92 Ba 0.08 TiO 3 ceramics , 2018, Journal of the European Ceramic Society.

[47]  Yang Zhou,et al.  Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites , 2018 .

[48]  Pan Chen,et al.  Strain gradient induced thermal-electrical response in paraelectric Na0.5Bi0.5TiO3-based ceramics , 2018 .

[49]  Xi Yao,et al.  Flexoelectric behavior in PIN-PMN-PT single crystals over a wide temperature range , 2017 .

[50]  Sergei V. Kalinin,et al.  Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity , 2017, Nature Communications.

[51]  S. Shen,et al.  Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment , 2017 .

[52]  Baolin Wang,et al.  Non-linear flexoelectricity in energy harvesting , 2017 .

[53]  Baojin Chu,et al.  Sodium bismuth titanate-based lead-free RAINBOW piezoelectric devices , 2017 .

[54]  Jacob L. Jones,et al.  Flexoelectric characterization of BaTiO3-0.08Bi(Zn1/2Ti1/2)O3 , 2017 .

[55]  Yu Wang,et al.  Large flexoelectricity in Al2O3-doped Ba(Ti0.85Sn0.15)O3 ceramics , 2017 .

[56]  Yang Zhou,et al.  Flexoelectric effect in PVDF-based polymers , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[57]  Xiaoning Jiang,et al.  Frequency dispersion of flexoelectricity in PMN-PT single crystal , 2017 .

[58]  Huaping Wu,et al.  Giant piezoelectric response in piezoelectric/dielectric superlattices due to flexoelectric effect , 2016 .

[59]  J. Narváez,et al.  Enhanced flexoelectric-like response in oxide semiconductors , 2016, Nature.

[60]  Zhenxiang Cheng,et al.  Mechanical force involved multiple fields switching of both local ferroelectric and magnetic domain in a Bi5Ti3FeO15 thin film , 2016, 1609.07831.

[61]  Baojin Chu,et al.  Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers , 2016 .

[62]  S. Shen,et al.  Experimental method research on transverse flexoelectric response of poly(vinylidene fluoride) , 2016 .

[63]  S. Shen,et al.  Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride , 2016 .

[64]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[65]  Xiaoning Jiang,et al.  Study on a flexoelectric microphone using barium strontium titanate , 2016 .

[66]  Pan Chen,et al.  Lead‐Free Metamaterials with Enormous Apparent Piezoelectric Response , 2015, Advanced materials.

[67]  S. Shen,et al.  Shear flexoelectric response along 3121 direction in polyvinylidene fluoride , 2015 .

[68]  S. Saremi,et al.  Large Flexoelectric Anisotropy in Paraelectric Barium Titanate. , 2015, Physical review letters.

[69]  Minglong Xu,et al.  Shear flexoelectric coefficient μ1211 in polyvinylidene fluoride , 2015 .

[70]  Lauren M. Garten,et al.  Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate , 2015 .

[71]  Amir Abdollahi Hosnijeh,et al.  Revisiting pyramid compression to quantify flexoelectricity: a three-dimensional simulation study , 2015 .

[72]  Jacob L. Jones,et al.  Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. , 2014, Nature materials.

[73]  Xiaoning Jiang,et al.  Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite , 2014 .

[74]  A. Erturk,et al.  Nanoscale flexoelectric energy harvesting , 2014 .

[75]  S. Bu,et al.  Flexoelectric Control of Defect Formation in Ferroelectric Epitaxial Thin Films , 2014, Advanced materials.

[76]  Xiaoning Jiang,et al.  Converse flexoelectric coefficient f1212 in bulk Ba0.67Sr0.33TiO3 , 2014 .

[77]  M. Stengel Surface control of flexoelectricity , 2014, 1402.2121.

[78]  Xiaoning Jiang,et al.  A trapezoidal flexoelectric accelerometer , 2014 .

[79]  J. Narváez,et al.  Origin of the enhanced flexoelectricity of relaxor ferroelectrics , 2013, 1312.5870.

[80]  S. Ducharme,et al.  Measurement of the flexoelectric response in ferroelectric and relaxor polymer thin films , 2013 .

[81]  M. Stengel Microscopic response to inhomogeneous deformations in curvilinear coordinates , 2013, Nature Communications.

[82]  Xiaoning Jiang,et al.  Flexoelectric nano-generator: Materials, structures and devices , 2013 .

[83]  F. Yuan,et al.  Flexoelectric sensing using a multilayered barium strontium titanate structure , 2013 .

[84]  Yong Li,et al.  Enhanced flexoelectric effect in a non-ferroelectric composite , 2013 .

[85]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[86]  Fuh-Gwo Yuan,et al.  A sensor for the direct measurement of curvature based on flexoelectricity , 2013 .

[87]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[88]  Hong Wang,et al.  Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3 ceramics , 2013 .

[89]  L. Martin,et al.  Large built-in electric fields due to flexoelectricity in compositionally graded ferroelectric thin films , 2013 .

[90]  Michael C. McAlpine,et al.  Nanoscale Flexoelectricity , 2013, Advanced materials.

[91]  Xiaoning Jiang,et al.  Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing , 2012 .

[92]  Sang Mo Yang,et al.  Flexoelectric rectification of charge transport in strain-graded dielectrics. , 2012, Nano letters.

[93]  D. Salem,et al.  Flexoelectricity in several thermoplastic and thermosetting polymers , 2012 .

[94]  A. S. Yurkov,et al.  Flexoelectric effect in finite samples , 2011, 1110.0380.

[95]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[96]  Xiaoyong Wei,et al.  Symmetry of flexoelectric coefficients in crystalline medium , 2011 .

[97]  Xiaoning Jiang,et al.  Scaling effect of flexoelectric (Ba,Sr)TiO3 microcantilevers , 2011 .

[98]  D. Vanderbilt,et al.  First-principles theory of frozen-ion flexoelectricity , 2011, 1108.4997.

[99]  Q. He,et al.  The number and types of all possible rotational symmetries for flexoelectric tensors , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[100]  T. Noh,et al.  Giant flexoelectric effect in ferroelectric epitaxial thin films. , 2011, Physical review letters.

[101]  John Y. Fu,et al.  Experimental studies on the direct flexoelectric effect in α-phase polyvinylidene fluoride films , 2011 .

[102]  Qin Chen,et al.  Giant flexoelectricity in polyvinylidene fluoride films , 2011 .

[103]  Nobuhiko Henmi,et al.  Measurement of Flexoelectric Effect in Lead Zirconate Titanate Ceramics , 2011 .

[104]  S. El-Borgi,et al.  Flexoelectric properties of ferroelectrics and the nanoindentation size-effect , 2011 .

[105]  L. E. Cross,et al.  FLEXOELECTRIC COMPOSITE — A NEW PROSPECT FOR LEAD-FREE PIEZOELECTRICS , 2010 .

[106]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[107]  L. Eric Cross,et al.  Flexure mode flexoelectric piezoelectric composites , 2009 .

[108]  M. Majdoub,et al.  Erratum: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect [Phys. Rev. B 77 , 125424 (2008)] , 2009, 0903.0785.

[109]  P. Hána Study of Flexoelectric Phenomenon from Direct and from Inverse Flexoelectric Behavior of PMNT Ceramic , 2007 .

[110]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.

[111]  Wenyi Zhu,et al.  Piezoelectric composite based on the enhanced flexoelectric effects , 2006 .

[112]  John Y. Fu,et al.  Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition , 2006 .

[113]  E. Furman,et al.  Study of the Inverse Flexoelectric Phenomena in Ceramic Lead Magnesium Niobate-Lead Titanate , 2006 .

[114]  L. Eric Cross,et al.  Flexoelectricity of barium titanate , 2006 .

[115]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[116]  A. Tagantsev,et al.  Strain relaxation of epitaxial SrTiO3 thin films on LaAlO3 by two-step growth technique , 2005 .

[117]  L. Eric Cross,et al.  Flexoelectric effect in ceramic lead zirconate titanate , 2005 .

[118]  J. Gregg,et al.  Strain gradients in epitaxial ferroelectrics , 2004, cond-mat/0411471.

[119]  A. Tagantsev,et al.  Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors , 2003 .

[120]  L. Eric Cross,et al.  Strain-gradient-induced electric polarization in lead zirconate titanate ceramics , 2003 .

[121]  L. Eric Cross,et al.  Flexoelectric polarization of barium strontium titanate in the paraelectric state , 2002 .

[122]  L. Eric Cross,et al.  Large flexoelectric polarization in ceramic lead magnesium niobate , 2001 .

[123]  L. Eric Cross,et al.  Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics , 2001 .

[124]  A. Tagantsev,et al.  Electric polarization in crystals and its response to thermal and elastic perturbations , 1991 .

[125]  Tagantsev Erratum: Piezoelectricity and flexoelectricity in crystalline dielectrics , 1987, Physical review. B, Condensed matter.