Optimization and Evaluation of Variability in the Programming Window of a Flash Cell With Molecular Metal–Oxide Storage

We report a modeling study of a conceptual nonvolatile memory cell based on inorganic molecular metal-oxide clusters as a storage media embedded in the gate dielectric of a MOSFET. For the purpose of this paper, we developed a multiscale simulation framework that enables the evaluation of variability in the programming window of a flash cell with sub-20-nm gate length. Furthermore, we studied the threshold voltage variability due to random dopant fluctuations and fluctuations in the distribution of the molecular clusters in the cell. The simulation framework and the general conclusions of our work are transferrable to flash cells based on alternative molecules used for a storage media.

[1]  A. Asenov,et al.  Statistical Interactions of Multiple Oxide Traps Under BTI Stress of Nanoscale MOSFETs , 2013, IEEE Electron Device Letters.

[2]  J. Poblet,et al.  Structure, properties and reactivity of polyoxometalates: a theoretical perspective. , 2012, Chemical Society reviews.

[3]  Tahone Yang,et al.  Scaling feasibility study of planar thin floating gate (FG) NAND Flash devices and size effect challenges beyond 20nm , 2011, 2011 International Electron Devices Meeting.

[4]  Judy L. Hoyt,et al.  High-density charge storage on molecular thin films - candidate materials for high storage capacity memory cells , 2011, 2011 International Electron Devices Meeting.

[5]  L. Cronin,et al.  Smart high-κ nanodielectrics using solid supported polyoxometalate-rich nanostructures. , 2011, ACS nano.

[6]  A. Asenov,et al.  Drain Current Collapse in Nanoscaled Bulk MOSFETs Due to Random Dopant Compensation in the Source/Drain Extensions , 2011, IEEE Transactions on Electron Devices.

[7]  Christian Monzio Compagnoni,et al.  Three-Dimensional Simulation of Charge-Trap Memory Programming—Part I: Average Behavior , 2011, IEEE Transactions on Electron Devices.

[8]  S M Amoroso,et al.  Three-Dimensional Simulation of Charge-Trap Memory Programming—Part II: Variability , 2011, IEEE Transactions on Electron Devices.

[9]  G. Bidan,et al.  Electrostatic immobilization of polyoxometallates on silicon: X-ray Photoelectron Spectroscopy and electrochemical studies , 2011 .

[10]  Tuo-Hung Hou,et al.  Integration of Self-Assembled Redox Molecules in Flash Memory Devices , 2011, IEEE Transactions on Electron Devices.

[11]  K. Hsieh,et al.  A novel BE-SONOS NAND Flash using non-cut trapping layer with superb reliability , 2010, 2010 International Electron Devices Meeting.

[12]  J. Deen,et al.  Nanoscale memory devices , 2010, Nanotechnology.

[13]  Christian Monzio Compagnoni,et al.  Comprehensive Investigation of Statistical Effects in Nitride Memories—Part I: Physics-Based Modeling , 2010, IEEE Transactions on Electron Devices.

[14]  A Maconi,et al.  Comprehensive Investigation of Statistical Effects in Nitride Memories—Part II: Scaling Analysis and Impact on Device Performance , 2010, IEEE Transactions on Electron Devices.

[15]  Y. J. Chen,et al.  Study of electron and hole injection statistics of BE-SONOS NAND Flash , 2010, 2010 IEEE International Memory Workshop.

[16]  Tuo-Hung Hou,et al.  Statistical Metrology of Metal Nanocrystal Memories With 3-D Finite-Element Analysis , 2009, IEEE Transactions on Electron Devices.

[17]  G. Ghibaudo,et al.  Investigation of Hybrid Molecular/Silicon Memories With Redox-Active Molecules Acting as Storage Media , 2009, IEEE Transactions on Nanotechnology.

[18]  A. Douvas,et al.  Polyoxometalate-based layered structures for charge transport control in molecular devices. , 2008, ACS nano.

[19]  G. Molas,et al.  Thorough investigation of Si-nanocrystal memories with high-k interpoly dielectrics for sub-45nm node Flash NAND applications , 2007, 2007 IEEE International Electron Devices Meeting.

[20]  S. Mahapatra,et al.  Development of A 3D Simulator for Metal Nanocrystal (NC) Flash Memories under NAND Operation , 2007, 2007 IEEE International Electron Devices Meeting.

[21]  L. Cronin,et al.  Polyoxometalate Clusters, Nanostructures and Materials: From Self-Assembly to Designer Materials and Devices , 2007 .

[22]  A. Bond,et al.  Structural, Electrochemical, and Spectroscopic Characterization of a Redox Pair of Sulfite-Based Polyoxotungstates: α-[W18O54(SO3)2]4- and α-[W18O54(SO3)2]5- , 2007 .

[23]  Edwin C. Kan,et al.  Programable molecular orbital states of C60 from integrated circuits , 2006 .

[24]  Tuo-Hung Hou,et al.  Design Optimization of Metal Nanocrystal Memory—Part II: Gate-Stack Engineering , 2006, IEEE Transactions on Electron Devices.

[25]  Electrical characterization of molecular monolayers containing tungsten polyoxometalates , 2006 .

[26]  S. Mahapatra,et al.  Lateral profiling of trapped charge in SONOS flash EEPROMs programmed using CHE injection , 2006, IEEE Transactions on Electron Devices.

[27]  H. Silva,et al.  Ultrashort SONOS memories , 2004, IEEE Transactions on Nanotechnology.

[28]  Kinam Kim,et al.  A novel SONOS structure of SiO/sub 2//SiN/Al/sub 2/O/sub 3/ with TaN metal gate for multi-giga bit flash memories , 2003, IEEE International Electron Devices Meeting 2003.

[29]  Jonathan S. Lindsey,et al.  Molecular Memories That Survive Silicon Device Processing and Real-World Operation , 2003, Science.

[30]  Andrew R. Brown,et al.  Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , 2003 .

[31]  D. Velessiotis,et al.  Tunneling transport in polyoxometalate based composite materials , 2003 .

[32]  Charles M. Lieber,et al.  Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires , 2002 .

[33]  Jae-Duk Lee,et al.  Effects of floating-gate interference on NAND flash memory cell operation , 2002, IEEE Electron Device Letters.

[34]  Andrew R. Brown,et al.  Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study , 2001 .

[35]  Marcel Swart,et al.  A charge analysis derived from an atomic multipole expansion , 2001, J. Comput. Chem..

[36]  Tom Ziegler,et al.  An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package , 1999 .

[37]  M. White,et al.  A low voltage SONOS nonvolatile semiconductor memory technology , 1996, Proceedings of Nonvolatile Memory Technology Conference.

[38]  Sandip Tiwari,et al.  Volatile and non-volatile memories in silicon with nano-crystal storage , 1995, Proceedings of International Electron Devices Meeting.

[39]  J. H. van Lenthe,et al.  The ZORA formalism applied to the Dirac-Fock equation , 1995 .

[40]  M. Wada,et al.  Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness , 1988, Technical Digest., International Electron Devices Meeting.

[41]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[42]  John Robertson,et al.  Gap states in silicon nitride , 1984 .

[43]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .