BxDF material acquisition, representation, and rendering for VR and design

Photorealistic and physically-based rendering of real-world environments with high fidelity materials is important to a range of applications, including special effects, architectural modelling, cultural heritage, computer games, automotive design, and virtual reality (VR). Our perception of the world depends on lighting and surface material characteristics, which determine how the light is reflected, scattered, and absorbed. In order to reproduce appearance, we must therefore understand all the ways objects interact with light, and the acquisition and representation of materials has thus been an important part of computer graphics from early days. Nevertheless, no material model nor acquisition setup is without limitations in terms of the variety of materials represented, and different approaches vary widely in terms of compatibility and ease of use. In this course, we describe the state of the art in material appearance acquisition and modelling, ranging from mathematical BSDFs to data-driven capture and representation of anisotropic materials, and volumetric/thread models for patterned fabrics. We further address the problem of material appearance constancy across different rendering platforms. We present two case studies in architectural and interior design. The first study demonstrates Yulio, a new platform for the creation, delivery, and visualization of acquired material models and reverse engineered cloth models in immersive VR experiences. The second study shows an end-to-end process of capture and data-driven BSDF representation using the physically-based Radiance system for lighting simulation and rendering.

[1]  Karol Myszkowski,et al.  Rendering Pearlescent Appearance Based On Paint‐Composition Modelling , 2001, Comput. Graph. Forum.

[2]  Stephen H. Westin,et al.  Automated three-axis gonioreflectometer for computer graphics applications , 2006 .

[3]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[4]  László Szirmay-Kalos,et al.  Compact Metallic Reflectance Models , 1999, Comput. Graph. Forum.

[5]  M. Haindl,et al.  Spatially Varying Bidirectional Reflectance Distribution Functions , 2013 .

[6]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[7]  E. Heitz Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs , 2014 .

[8]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[9]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[10]  H. Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[11]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[12]  Wenzel Jakob,et al.  An adaptive parameterization for efficient material acquisition and rendering , 2018, ACM Trans. Graph..

[13]  Tim Weyrich,et al.  Principles of appearance acquisition and representation , 2007, SIGGRAPH '08.

[14]  Frédo Durand,et al.  Image-driven navigation of analytical BRDF models , 2006, EGSR '06.

[15]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[16]  Steven M. Seitz,et al.  Example-based photometric stereo: shape reconstruction with general, varying BRDFs , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  N. Rivière,et al.  Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion method , 2012 .

[18]  M. Ashikhmin,et al.  Distribution-based BRDFs , 2007 .

[19]  Mario Fritz,et al.  Deep Reflectance Maps , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Anders Ynnerman,et al.  BRDF models for accurate and efficient rendering of glossy surfaces , 2012, TOGS.

[21]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[22]  Pieter Peers,et al.  Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination , 2007 .

[23]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[24]  Giuseppe Claudio Guarnera,et al.  BRDF Representation and Acquisition , 2016, Comput. Graph. Forum.

[25]  Jason Lawrence,et al.  A photometric approach for estimating normals and tangents , 2008, ACM Trans. Graph..

[26]  T. Trowbridge,et al.  Average irregularity representation of a rough surface for ray reflection , 1975 .

[27]  Pat Hanrahan,et al.  Reflection from layered surfaces due to subsurface scattering , 1993, SIGGRAPH.

[28]  Pieter Peers,et al.  Estimating Surface Normals from Spherical Stokes Reflectance Fields , 2012, ECCV Workshops.

[29]  Pieter Peers,et al.  genBRDF: discovering new analytic BRDFs with genetic programming , 2014, ACM Trans. Graph..

[30]  Stephen H. Westin,et al.  A Comparison of Four BRDF Models , 2005 .

[31]  Pieter Peers,et al.  Estimating Specular Roughness and Anisotropy from Second Order Spherical Gradient Illumination , 2009, Comput. Graph. Forum.

[32]  Alexander Wilkie,et al.  Arbitrarily layered micro-facet surfaces , 2007, GRAPHITE '07.

[33]  Nicolas Holzschuch,et al.  Accurate fitting of measured reflectances using a Shifted Gamma micro‐facet distribution , 2012, Comput. Graph. Forum.

[34]  Carsten Dachsbacher,et al.  The SGGX microflake distribution , 2015, ACM Trans. Graph..

[35]  Holly E. Rushmeier,et al.  A Sparse Parametric Mixture Model for BTF Compression, Editing and Rendering , 2011, Comput. Graph. Forum.

[36]  Jaakko Lehtinen,et al.  Two-shot SVBRDF capture for stationary materials , 2015, ACM Trans. Graph..

[37]  Pieter Peers,et al.  Mobile Surface Reflectometry , 2014, SIGGRAPH '14.

[38]  Athinodoros S. Georghiades,et al.  Recovering 3-D Shape and Reflectance From a Small Number of Photographs , 2003, Rendering Techniques.

[39]  David J. Kriegman,et al.  Photometric stereo with non-parametric and spatially-varying reflectance , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Robert R. Lewis,et al.  Making Shaders More Physically Plausible , 1994, Comput. Graph. Forum.

[41]  Eric P. Lafortune,et al.  Using the modified Phong reflectance model for physically based rendering , 1994 .

[42]  Steve Marschner,et al.  Predicting Appearance from Measured Microgeometry of Metal Surfaces , 2015, ACM Trans. Graph..

[43]  Steve Marschner,et al.  Discrete stochastic microfacet models , 2014, ACM Trans. Graph..

[44]  Pieter Peers,et al.  Circularly polarized spherical illumination reflectometry , 2010, ACM Trans. Graph..

[45]  Matthew O'Toole,et al.  BRDF Acquisition with Basis Illumination , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[46]  Henrik Wann Jensen,et al.  A practical microcylinder appearance model for cloth rendering , 2013, TOGS.

[47]  Hans-Peter Seidel,et al.  Image-based reconstruction of spatial appearance and geometric detail , 2003, TOGS.

[48]  Steve Marschner,et al.  Building volumetric appearance models of fabric using micro CT imaging , 2011, ACM Trans. Graph..

[49]  Murat Kurt,et al.  A General BRDF Representation Based on Tensor Decomposition , 2011, Comput. Graph. Forum.

[50]  Eugene L. Church,et al.  Optimal estimation of finish parameters , 1991, Optics & Photonics.

[51]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[52]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[53]  Pieter Peers,et al.  Reflectance scanning , 2014, ACM Trans. Graph..

[54]  Ralf Sarlette,et al.  Photo‐realistic Rendering of Metallic Car Paint from Image‐Based Measurements , 2008, Comput. Graph. Forum.

[55]  Andrew McNeil,et al.  A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems , 2013 .

[56]  Baihua Li,et al.  Perceptually Validated Cross-Renderer Analytical BRDF Parameter Remapping , 2020, IEEE Transactions on Visualization and Computer Graphics.

[57]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[58]  Greg Ward A Practical Framework for Sharing and Rendering Real-World Bidirectional Scattering Distribution Functions , 2014 .

[59]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[60]  Yasushi Yagi,et al.  Multiplexed Illumination for Measuring BRDF Using an Ellipsoidal Mirror and a Projector , 2007, ACCV.

[61]  David Geisler-Moroder,et al.  A New Ward BRDF Model with Bounded Albedo , 2010, Comput. Graph. Forum.

[62]  Jirí Filip,et al.  Adaptive highlights stencils for modeling of multi-axial BRDF anisotropy , 2015, The Visual Computer.

[63]  B. Smith,et al.  Geometrical shadowing of a random rough surface , 1967 .

[64]  Reinhard Klein,et al.  Image-Based Reverse Engineering and Visual Prototyping of Woven Cloth , 2015, IEEE Transactions on Visualization and Computer Graphics.

[65]  Shree K. Nayar,et al.  Generalization of Lambert's reflectance model , 1994, SIGGRAPH.

[66]  Moshe Ben-Ezra,et al.  An LED-only BRDF measurement device , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Tim Weyrich,et al.  A layered, heterogeneous reflectance model for acquiring and rendering human skin , 2008, SIGGRAPH Asia '08.

[68]  Holly Rushmeier,et al.  Experiments with a low-cost system for computer graphics material model acquisition , 2015, Electronic Imaging.

[69]  Baihua Li,et al.  Perceptually validated analytical BRDFs parameters remapping , 2018, SIGGRAPH Talks.

[70]  Tim Weyrich,et al.  Image-based Remapping of Material Appearance , 2017, MAM@EGSR.

[71]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[72]  Steve Marschner,et al.  Structure-aware synthesis for predictive woven fabric appearance , 2012, ACM Trans. Graph..

[73]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[74]  Ken Perlin,et al.  Measuring bidirectional texture reflectance with a kaleidoscope , 2003, ACM Trans. Graph..

[75]  Kristin J. Dana BRDF/BTF measurement device , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[76]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[77]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[78]  Nicolas Bonneel,et al.  Reducing Anisotropic BSDF Measurement to Common Practice , 2014, Material Appearance Modeling.

[79]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[80]  Steve Marschner,et al.  Estimating dual-scale properties of glossy surfaces from step-edge lighting , 2011, ACM Trans. Graph..

[81]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[82]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[83]  Jonathan T. Moon,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, ACM Trans. Graph..

[84]  Miguel A. Otaduy,et al.  An Appearance Model for Textile Fibers , 2017, Comput. Graph. Forum.

[85]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[86]  Amitabh Varshney,et al.  Interactive subsurface scattering for translucent meshes , 2003, I3D '03.

[87]  Stephen Lin,et al.  Photorealistic rendering of knitwear using the lumislice , 2001, SIGGRAPH.

[88]  Matthew O'Toole,et al.  A Basis Illumination Approach to BRDF Measurement , 2010, International Journal of Computer Vision.

[89]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[90]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[91]  Sato Imari,et al.  Inverse Rendering for Computer Graphics , 2010 .

[92]  Peter Hall,et al.  Woven Fabric Model Creation from a Single Image , 2017, ACM Trans. Graph..

[93]  Ravi Ramamoorthi,et al.  Reflectance sharing: predicting appearance from a sparse set of images of a known shape , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Jaakko Lehtinen,et al.  Practical SVBRDF capture in the frequency domain , 2013, ACM Trans. Graph..

[95]  Christophe Schlick,et al.  An Inexpensive BRDF Model for Physically‐based Rendering , 1994, Comput. Graph. Forum.

[96]  Ramesh Raskar,et al.  Single view reflectance capture using multiplexed scattering and time-of-flight imaging , 2011, SA '11.

[97]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[98]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[99]  James Arvo,et al.  Applications of irradiance tensors to the simulation of non-Lambertian phenomena , 1995, SIGGRAPH.

[100]  Brian E. Smits,et al.  Practical physically-based shading in film and game production , 2012, SIGGRAPH '12.

[101]  Hans-Peter Seidel,et al.  Mesostructure from Specularity , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[102]  Paul Graham,et al.  Acquiring reflectance and shape from continuous spherical harmonic illumination , 2013, ACM Trans. Graph..

[103]  Michael Lindenbaum,et al.  On the metric properties of discrete space-filling curves , 1996, IEEE Trans. Image Process..

[104]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[105]  Ye Yu,et al.  InverseRenderNet: Learning Single Image Inverse Rendering , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[106]  Peter Shirley,et al.  A Low Distortion Map Between Disk and Square , 1997, J. Graphics, GPU, & Game Tools.

[107]  Philippe Bekaert,et al.  High quality mesostructure acquisition using specularities , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[108]  Arne Dür,et al.  An Improved Normalization for the Ward Reflectance Model , 2006, J. Graph. Tools.

[109]  László Szirmay-Kalos,et al.  An anisotropic BRDF model for fitting and Monte Carlo rendering , 2010, COMG.

[110]  Kalyan Sunkavalli,et al.  Learning to reconstruct shape and spatially-varying reflectance from a single image , 2018, ACM Trans. Graph..

[111]  Julie Dorsey,et al.  Digital Modeling of Material Appearance , 2007 .

[112]  Andrew Gardner,et al.  Linear light source reflectometry , 2003, ACM Trans. Graph..

[113]  Ralf Sarlette,et al.  Efficient and Realistic Visualization of Cloth , 2003, Rendering Techniques.

[114]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[115]  Adrien Bousseau,et al.  Single-image SVBRDF capture with a rendering-aware deep network , 2018, ACM Trans. Graph..

[116]  F. Clarke,et al.  Helmholtz Reciprocity: its validity and application to reflectometry , 1985 .

[117]  Karol Myszkowski,et al.  Reverse engineering approach to appearance-based design of metallic and pearlescent paints , 2004, The Visual Computer.

[118]  Derek Bradley,et al.  Recent Advances in Facial Appearance Capture , 2015, Comput. Graph. Forum.

[119]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[120]  Marc Stamminger,et al.  Translucent Shadow Maps , 2003, Rendering Techniques.

[121]  E. L. Church,et al.  The Prediction Of BRDFs From Surface Profile Measurements , 1990, Optics & Photonics.

[122]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[123]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.