Gate-bias-controlled sensitivity and SNR enhancement in a nanowire FET pressure sensor

This work demonstrates a nanoelectromechanical pressure sensor based on a nanowire field-effect transistor (NWFET) sensing element. We report that the sensitivity of the pressure sensor can be enhanced up to four times when NWFET operates in subthreshold mode instead of inversion mode. The sensitivity enhancement is attributed to carrier confinement inside the nanowire channel which is obtained by gate bias tuning. In particular, the pressure sensitivity enhances from 0.019 to 0.079 (mA/A)/mmHg by changing the NWFET gate bias from 0.2 V (inversion region) to −0.2 V (subthreshold region). The low-frequency noise characteristics show the significant reduction in drain current noise for NWFET when biased in the subthreshold region, enhancing the signal-to-noise ratio (SNR) from 2 × 106 (inversion region) to 2.4 × 109 (subthreshold region). The result shows that the NWFET-based pressure sensor operates at a low bias with higher piezoresistance and can be used to measure low pressures with a high SNR.

[1]  C. Pramanik,et al.  Piezoresistive pressure sensing by porous silicon membrane , 2006, IEEE Sensors Journal.

[2]  O. Hansen,et al.  Increased piezoresistive effect in crystalline and polycrystalline Si nanowires , 2008 .

[3]  Josep Samitier,et al.  High-performance piezoresistive pressure sensors for biomedical applications using very thin structured membranes , 1996 .

[4]  Ching-Liang Dai,et al.  Manufacture of a Polyaniline Nanofiber Ammonia Sensor Integrated with a Readout Circuit Using the CMOS-MEMS Technique , 2009, Sensors.

[5]  Richard C. Jaeger,et al.  Piezoresistive characteristics of short-channel MOSFETs on (100) silicon , 2001 .

[6]  Julien Reboud,et al.  Electrically controlled giant piezoresistance in silicon nanowires. , 2010, Nano letters.

[7]  Ru Huang,et al.  Investigation of Low-Frequency Noise in Silicon Nanowire MOSFETs , 2009, IEEE Electron Device Letters.

[8]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[9]  C. Hierold,et al.  Signal-to-noise ratio in carbon nanotube electromechanical piezoresistive sensors. , 2010, Nano letters.

[10]  Mireille Mouis,et al.  Electron mobility increase in submicronic transistors integrated on ultrathin silicon membranes subjected to high mechanical stress , 2010 .

[11]  Alistair Rowe,et al.  Silicon nanowires feel the pinch. , 2008, Nature nanotechnology.

[12]  Ernst Obermeier,et al.  AeroMEMS sensor array for high-resolution wall pressure measurements , 2006 .

[13]  M. J. Deen,et al.  Noise considerations in field-effect biosensors , 2006 .

[14]  Akio Yasukawa,et al.  Optimum design considerations for silicon piezoresistive pressure sensors , 1997 .

[15]  Beth L. Pruitt,et al.  Review: Semiconductor Piezoresistance for Microsystems , 2009, Proceedings of the IEEE.

[16]  A. Bid,et al.  1/f noise in nanowires , 2005, cond-mat/0512112.

[17]  V. Dravid,et al.  MOSFET-Embedded Microcantilevers for Measuring Deflection in Biomolecular Sensors , 2006, Science.

[18]  Nanomechanoelectronic signal transduction scheme with metal-oxide-semiconductor field-effect transistor-embedded microcantilevers , 2009 .

[19]  James H. Smith,et al.  Micromachined pressure sensors: review and recent developments , 1997 .

[20]  Jeffrey Bokor,et al.  Fabrication of planar silicon nanowires on silicon-on-insulator using stress limited oxidation , 1997 .

[21]  Hiranmay Saha,et al.  Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications , 2006 .

[22]  Guofu Niu,et al.  Low-Frequency Noise , 2005 .