WiMAX femtocells: a perspective on network architecture, capacity, and coverage

Femtocells are viewed as a promising option for mobile operators to improve coverage and provide high-data-rate services in a cost-effective manner. The idea is to overlay low-power and low-cost base station devices, Femto-APs, on the existing cellular network, where each Femto-AP provides high-speed wireless connection to subscribers within a small range. In particular, Femto-APs can be used to serve indoor users, resulting in a powerful solution for ubiquitous indoor and outdoor coverage, using a single access technology such as WiMAX. In this article we consider a WiMAX network deploying both macro BSs and Femto-APs, where it is assumed that Femto-APs have wired backhaul such as cable or DSL and operate on the same frequency band as macro BSs. Simulation results show that significant areal capacity (throughput per unit area) gain can be achieved via intense spatial reuse of the wireless spectrum. In addition, Femto-APs improve indoor coverage, where the macro BS signal may be weak. Motivated by the gains in capacity and coverage offered by femtocells, we review the state of the art of this "infant" technology, including use cases and network deployment scenarios, technical challenges that need to be addressed, and current standardization and industry activity.

[1]  Holger Claussen,et al.  Performance of Macro- and Co-Channel Femtocells in a Hierarchical Cell Structure , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[2]  Holger Claussen,et al.  Effects of User-Deployed, Co-Channel Femtocells on the Call Drop Probability in a Residential Scenario , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.