Identification of quadratic systems using higher order cumulants and neural networks: Application to model the delay of video-packets transmission

This work concerns the development of two approaches for the identification of diagonal parameters of quadratic systems from only the output observation. The systems considered are excited by an unobservable independent identically distributed (i.i.d), stationary zero mean, non-Gaussian process and corrupted by an additive Gaussian noise. The proposed approaches exploit higher order cumulants (HOC) (fourth order cumulants) and are the extension of the algorithms developed in the linear version 1D, which uses a non-Gaussian signal input. For test and validity purpose, these approaches are compared to recursive least square (RLS), least mean square (LMS) and neural network identification algorithms using non-linear model in noisy environment. To demonstrate the applicability of the theoretical methods on real processes, we applied the developed approaches to search for models able to describe the delay of the video-packets transmission over IP networks from video server. The simulation results show the correctness and the efficiency of the developed approaches.

[1]  A. Zeroual,et al.  Forecasting the wind speed process using higher order statistics and fuzzy systems , 2006 .

[2]  Georg Dorffner,et al.  Neural Networks for Time Series Processing , 1996 .

[3]  Abdelouhab Zeroual,et al.  The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation , 2007 .

[4]  G. Giannakis On the identifiability of non-Gaussian ARMA models using cumulants , 1990 .

[5]  Mostafa Bellafkih,et al.  An Adaptive Fuzzy Clustering Approach for the Network Management , 2007 .

[6]  V. J. Mathews Adaptive polynomial filters , 1991, IEEE Signal Processing Magazine.

[7]  J. Mendel,et al.  Time and lag recursive computation of cumulants from a state-space model , 1990 .

[8]  D. Aboutajdine,et al.  2 - Identification des signaux à moyenne ajustée non gaussiens à l'aide de cumulants , 1999 .

[9]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[10]  L. Yi-Hui,et al.  Evolutionary neural network modeling for forecasting the field failure data of repairable systems , 2007, Expert Syst. Appl..

[11]  Wen Yu,et al.  Dead-zone Kalman filter algorithm for recurrent neural networks , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[12]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[13]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[14]  A.Y. Kibangou,et al.  Semi-blind receiver for the fiber-wireless uplink channel , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Masao Masugi,et al.  Using a Volterra system model to analyze nonlinear response in video-packet transmission over IP networks , 2007 .

[16]  Driss Aboutajdine,et al.  Higher-order statistics based blind estimation of non-Gaussian bidimensional moving average models , 2006, Signal Process..

[17]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[18]  Allan Kardec Barros,et al.  Comparison among Three Estimators for High Order Statistics , 1998, ICONIP.

[19]  D. Westwick,et al.  Identification of a Hammerstein model of the stretch reflex EMG using separable least squares , 2000, Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143).

[20]  Tommy W. S. Chow,et al.  Blind identification of quadratic nonlinear models using neural networks with higher order cumulants , 2000, IEEE Trans. Ind. Electron..

[21]  J. Lacoume,et al.  Statistiques d'ordre supérieur pour le traitement du signal , 1997 .

[22]  Nicholas Kalouptsidis,et al.  Blind identification of second order Hammerstein series , 2000, 2000 10th European Signal Processing Conference.

[23]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[24]  Said Safi,et al.  Blind parametric identification of non-Gaussian FIR systems using higher order cumulants , 2004, Int. J. Syst. Sci..

[25]  A. Zeroual,et al.  Blind Identification in Noisy Environment of Nonminimum Phase Finite Impulse Response (FIR) System Using Higher Order Statistics , 2003 .

[26]  Younes Jabrane,et al.  Neural Networks for Interferences Suppression in DS/CDMA with Rayleigh Fading Channel and Power Control Error , 2007 .

[27]  Abdelouahid Lyhyaoui,et al.  Identification of Quadratic Non Linear Systems Using Higher Order Statistics and Fuzzy Models , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[28]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[29]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[30]  Georgios B. Giannakis,et al.  Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors , 1993, Signal Process..

[31]  Nicholas Kalouptsidis,et al.  Identification of input-output bilinear systems using cumulants , 2001, IEEE Trans. Signal Process..

[32]  Nicholas Kalouptsidis,et al.  A cumulant based algorithm for the identification of input output quadratic systems , 2000, 2000 10th European Signal Processing Conference.

[33]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[34]  S. Safi,et al.  Prediction of global daily solar radiation using higher order statistics , 2002 .

[35]  Georgios B. Giannakis,et al.  WAVELET PHASE RECONSTRUCTION USING CUMULANTS. , 1987 .

[36]  B. Widrow,et al.  Adaptive inverse control , 1987, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[37]  Georgios B. Giannakis,et al.  Wavelet parameter and phase estimation using cumulant slices , 1989 .

[38]  Licheng Jiao,et al.  On the convergence of Volterra filter equalizers using a pth-order inverse approach , 2001, IEEE Trans. Signal Process..

[39]  Nicholas Kalouptsidis,et al.  Identification of discrete-time state affine state space models using cumulants , 2002, Autom..