Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin a Hybrid Branch-and-bound Approach for Exact Rational Mixed-integer Programming

We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP  solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the Miplib and Mittelmann libraries and for a new collection of numerically difficult instances.

[1]  Tobias Achterberg,et al.  Constraint integer programming , 2007 .

[2]  R. Bixby An Updated Mixed Integer Programming Library MIPLIB , 1998 .

[3]  Daniel G. Espinoza On Linear Programming, Integer Programming and Cutting Planes , 2006 .

[4]  Joo-siong Chai,et al.  Computation of condition numbers for linear programming problems using Peña’s method , 2006, Optim. Methods Softw..

[5]  Felipe Cucker,et al.  Solving linear programs with finite precision: II. Algorithms , 2006, J. Complex..

[6]  Martin W. P. Savelsbergh,et al.  An Updated Mixed Integer Programming Library: MIPLIB 3.0 , 1998 .

[7]  Thorsten Koch The final NETLIB-LP results , 2004, Oper. Res. Lett..

[8]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[9]  Michael P. Mesnier,et al.  The Network-Enabled Optimization System (neos) Server , 1996 .

[10]  William J. Cook,et al.  Cook. The Traveling Salesman Problem: A Computational Study. , 2022 .

[11]  Fernando Ordóñez,et al.  Computational Experience and the Explanatory Value of Condition Measures for Linear Optimization , 2003, SIAM J. Optim..

[12]  James Renegar,et al.  Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..

[13]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[14]  Sven de Vries,et al.  Combinatorial Auctions: A Survey , 2003, INFORMS J. Comput..

[15]  William M. Springer Review of the traveling salesman problem: a computational study by Applegate, Bixby, Chvátal, and Cook (Princeton University Press) , 2009, SIGA.

[16]  Felipe Cucker,et al.  Unifying Condition Numbers for Linear Programming , 2003, Math. Oper. Res..

[17]  Kurt Mehlhorn,et al.  Certifying and repairing solutions to large LPs how good are LP-solvers? , 2003, SODA '03.

[18]  Arnold Neumaier,et al.  Safe bounds in linear and mixed-integer linear programming , 2004, Math. Program..

[19]  G. Nemhauser,et al.  Integer Programming , 2020 .

[20]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[21]  William J. Cook,et al.  Exact solutions to linear programming problems , 2007, Oper. Res. Lett..

[22]  Thorsten Koch,et al.  Rapid mathematical programming , 2005 .

[23]  Daniel E. Steffy,et al.  Valid Linear Programming Bounds for Exact Mixed-Integer Programming , 2013, INFORMS J. Comput..

[24]  J. Renegar Some perturbation theory for linear programming , 1994, Math. Program..

[25]  Andrea Lodi,et al.  MIPLIB 2010 , 2011, Math. Program. Comput..

[26]  William J. Cook,et al.  Numerically Safe Gomory Mixed-Integer Cuts , 2009, INFORMS J. Comput..

[27]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[28]  Jeff Linderoth,et al.  Noncommercial Software for Mixed-Integer Linear Programming , 2005 .

[29]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[30]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[31]  Kent Wilken,et al.  Optimal instruction scheduling using integer programming , 2000, PLDI.

[32]  Ernst Althaus,et al.  Fast and Accurate Bounds on Linear Programs , 2009, SEA.

[33]  Jorge R. Vera,et al.  On the complexity of linear programming under finite precision arithmetic , 1998, Math. Program..

[34]  Thorsten Koch,et al.  Optimierung des G-WiN , 2000 .

[35]  John K. Karlof,et al.  Integer programming : theory and practice , 2005 .

[36]  James Renegar,et al.  Incorporating Condition Measures into the Complexity Theory of Linear Programming , 1995, SIAM J. Optim..

[37]  Felipe Cucker,et al.  A new condition number for linear programming , 2001, Math. Program..

[38]  Felipe Cucker,et al.  Solving linear programs with finite precision: I. Condition numbers and random programs , 2004, Math. Program..

[39]  Robert M. Freund,et al.  Condition measures and properties of the central trajectory of a linear program , 1998, Math. Program..

[40]  C. C. Gonzaga On the Complexity of Linear Programming , 1995 .

[41]  William J. Cook,et al.  Topics in exact precision mathematical programming , 2010 .