Improving the unreliability of competence information: an argumentation to apply information fusion in learning networks

Automated competence tracking and management is crucial for an effective and efficient lifelong competence development in learning networks. In this paper, we systematically analyse the problem of unreliability of competence information in learning networks. In tracking the development of competences in learning networks, a large amount of competence information can be gathered from diverse sources and diverse types of sources. Individual information is more or less credible. This paper investigates information fusion technologies that may be applied to address the problem and that show promise as candidate solutions for achieving an improved estimate of competences by fusing information coming from multiple sources and diverse types of sources.

[1]  Lucien Wald,et al.  Some terms of reference in data fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[2]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[3]  Gellof Kanselaar Lifelong Learning, with and without new media , 1996 .

[4]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[5]  Colin Tattersall,et al.  Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning , 2004, Br. J. Educ. Technol..

[6]  Lucien Wald,et al.  A European proposal for terms of reference in data fusion , 1998 .

[7]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[8]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[9]  Colin Tattersall,et al.  New directions for lifelong learning using network technologies , 2004, Br. J. Educ. Technol..

[10]  Christoph Lofi,et al.  A Model for Competence Gap Analysis , 2007, WEBIST.

[11]  Rob Nadolski,et al.  Competence Description for Personal Recommendations: The Importance of Identifying the Complexity of Learning and Performance Situations , 2008, J. Educ. Technol. Soc..

[12]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[13]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[14]  Rob Koper Building Learning Networks for Lifelong Learners: Challenges, Models, Technologies and Standards , 2006, Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06).

[15]  Eduardo F. Nakamura,et al.  Information fusion for wireless sensor networks: Methods, models, and classifications , 2007, CSUR.

[16]  Colin Tattersall,et al.  A design model for lifelong learning networks , 2005, Interact. Learn. Environ..

[17]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[18]  A. N. Steinberg Data fusion system engineering , 2001 .

[19]  Rob Koper,et al.  Effective Learning Networks , 2005 .

[20]  Jati K. Sengupta,et al.  Introduction to Information , 1993 .