Similarity between the Mandelbrot set and Julia sets
暂无分享,去创建一个
[1] COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Universal properties for sequences of bifurcations of period three , 1983 .
[2] J. Eckmann,et al. Scaling of Mandelbrot sets generated by critical point preperiodicity , 1985 .
[3] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[4] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[5] M. Feigenbaum. Universal behavior in nonlinear systems , 1983 .
[6] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[7] Pierre Collet,et al. Universal properties of maps on an interval , 1980 .
[8] Peter H. Richter,et al. The Beauty of Fractals , 1988, 1988.
[9] S. Grossmann,et al. Invariant Distributions and Stationary Correlation Functions of One-Dimensional Discrete Processes , 1977 .
[10] Martin C. Tangora,et al. Computers in Geometry and Topology , 1989 .
[11] J. Eckmann,et al. Fixed points of Feigenbaum's type for the equationfp(λx)≡λf(x) , 1984 .
[12] Massimo Campanino,et al. On the existence of Feigenbaum's fixed point , 1981 .
[13] P. Blanchard. Complex analytic dynamics on the Riemann sphere , 1984 .
[14] John H. Hubbard,et al. On the dynamics of polynomial-like mappings , 1985 .
[15] Jean-Pierre Eckmann,et al. A complete proof of the Feigenbaum conjectures , 1987 .
[16] A. Douady,et al. Étude dynamique des polynômes complexes , 1984 .