Artemisinin Derivatives with Antimalarial Activity against Plasmodium falciparum Designed with the Aid of Quantum Chemical and Partial Least Squares Methods

Artemisinin derivatives with antimalarial activity against Plasmodium falciparum resistant to mefloquine are designed with the aid of Quantum Chemical and Partial Least Squares Methods. The PLS model with three principal components explaining 89.55% of total variance, Q 2 = 0.83 and R 2 = 0.92 was obtained for 14/5 molecules in the training/external validation set. The most important descriptors for the design of the model were one level above the lowest unoccupied molecular orbital energy (LUMO + 1), atomic charges in atoms C9 and C11 (Q 9 ) and (Q 1 1 ) respectively, the maximum number of hydrogen atoms that might make contact with heme (NH) and RDF030 m (a radial distribution function centered at 3.0 A interatomic distance and weighted by atomic masses). From a set of ten proposed artemisinin derivatives, a new compound (26), was predicted with antimalarial activity higher than the compounds reported in literature. Molecular graphics and modeling supported the PLS results and revealed heme-ligand and protein-ligand stereoelectronic relationships as important for antimalarial activity. The most active 26 and 29 in the prediction set possess substituents at C9 able to extend to hemoglobin exterior, what determines the high activity of these compounds.

[1]  R. Gwilliam,et al.  The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.

[2]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[3]  M. Nishio,et al.  The CH/π Interaction Implications in Chemistry and Life Science , 1996 .

[4]  D. L. Klayman,et al.  Qinghaosu (artemisinin): an antimalarial drug from China , 1985 .

[5]  S. Meshnick,et al.  The interaction of artemisinin with malarial hemozoin. , 1994, Molecular and biochemical parasitology.

[6]  Bernd M. Rode,et al.  Quantum Pharmacological Analysis of Structure-Activity Relationships for Mefloquine Antimalarial Drugs , 1989, J. Chem. Inf. Comput. Sci..

[7]  Supot Hannongbua,et al.  Quantum pharmacological analysis of structure-activity relationships for mefloquine antimalarial drugs. , 1989 .

[8]  Vudhichai Parasuk,et al.  QSAR study of antimalarial activities and artemisinin-heme binding properties obtained from docking calculations. , 2000 .

[9]  C. George,et al.  Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 3. Aromatic amine analogues. , 1990, Journal of medicinal chemistry.

[10]  D. Ollis,et al.  Structure of ferric soybean leghemoglobin a nicotinate at 2.3 A resolution. , 1997, Acta crystallographica. Section D, Biological crystallography.

[11]  S. Meshnick,et al.  Identification of hemoglobin degradation products in Plasmodium falciparum. , 1997, Molecular and biochemical parasitology.

[12]  Quantum Chemistry and Drug Design , 1995, CHIMIA.

[13]  Virander S. Chauhan,et al.  Artemisinin, an Endoperoxide Antimalarial, Disrupts the Hemoglobin Catabolism and Heme Detoxification Systems in Malarial Parasite* , 1999, The Journal of Biological Chemistry.

[14]  Paola Gramatica,et al.  SD-modelling and Prediction by WHIM Descriptors. Part 5. Theory Development and Chemical Meaning of WHIM Descriptors , 1997 .

[15]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .

[16]  B. K. Park,et al.  Novel, potent, semisynthetic antimalarial carba analogues of the first-generation 1,2,4-trioxane artemether. , 1999, Journal of medicinal chemistry.

[17]  Supot Hannongbua,et al.  Quantum pharmacological studies on antimalarial drugs , 1989 .

[18]  Johann Gasteiger,et al.  Deriving the 3D structure of organic molecules from their infrared spectra , 1999 .

[19]  Keith S. Wilson,et al.  Crystal structure of oxidized Bacillus pasteurii cytochrome c553 at 0.97-A resolution. , 2000, Biochemistry.

[20]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[21]  Yu-lin Wu,et al.  A Possible Antimalarial Action Mode of Qinghaosu (Artemisinin) Series Compounds. Alkylation of Reduced Glutathione by C-Centered Primary Radicals Produced from Antimalarial Compound Qinghaosu and 12-(2,4-Dimethoxyphenyl)-12-deoxoqinghaosu. , 2001 .

[22]  H. Elsohly,et al.  Practical conversion of artemisinic acid in desoxyartemisinin , 1986 .

[23]  Bruce Slutsky,et al.  Chemometrics: A Practical Guide By Kenneth R. Beebe, Randy J. Pell, and Mary Beth Seasholtz. Wiley-Interscience Series on Laboratory Automation. John Wiley & Sons: New York, 1998, xi + 348 pp, ISBN 0-471-12451-6 , 1998, Journal of chemical information and computer sciences.

[24]  H. Kubinyi QSAR : Hansch analysis and related approaches , 1993 .

[25]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[26]  J. Karle,et al.  Molecular electronic properties of a series of 4-quinolinecarbinolamines define antimalarial activity profile. , 1996, Journal of medicinal chemistry.

[27]  P. Ertl,et al.  Spectroscopic and theoretical evidence for a strong electron-donor effect of the oxo ligand in chlorodicyclopentadienyloxoniobium(V) complexes , 1994 .

[28]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[29]  K S Wilson,et al.  Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. , 1995, Structure.

[30]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[31]  J. C. Pinheiro,et al.  Antimalarial activity of dihydroartemisinin derivatives against P. falciparum resistant to mefloquine: a quantum chemical and multivariate study , 2001 .

[32]  D. Maric,et al.  Computational studies of the structures and properties of potential antimalarial compounds based on the 1,2,4‐trioxane ring structure. I. Artemisinin‐like molecules , 1994 .

[33]  B. K. Park,et al.  Synthesis, antimalarial activity, and molecular modeling of tebuquine analogues. , 1997, Journal of medicinal chemistry.

[34]  D. Wright,et al.  Multiple-Antigenic Peptides of Histidine-Rich Protein II of Plasmodium falciparum: Dendrimeric Biomineralization Templates , 1999 .

[35]  W. Milhous,et al.  Structure-activity relationships of the antimalarial agent artemisinin. 1. Synthesis and comparative molecular field analysis of C-9 analogs of artemisinin and 10-deoxoartemisinin. , 1993, Journal of medicinal chemistry.

[36]  W. Milhous,et al.  Antimalarial activity of new water-soluble dihydroartemisinin derivatives. , 1987, Journal of medicinal chemistry.

[37]  R. Palmer,et al.  Structure, absolute configuration, and conformation of the antimalarial compound, Artemisinin , 1998 .

[38]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. XI. Molecular Orbital Theory of NMR Chemical Shifts , 1971 .

[39]  Supot Hannongbua,et al.  Analysis Of Structure-Activity Relation for Primaquine Antimalarial Drugs by a Quantum Pharmacological Approach , 1988 .

[40]  M. Avery,et al.  Structure-activity relationships of the antimalarial agent artemisinin. 5. Analogs of 10-deoxoartemisinin substituted at C-3 and C-9. , 1996, Journal of medicinal chemistry.

[41]  D. Krogstad,et al.  Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. , 1998, Journal of medicinal chemistry.

[42]  M. Ferreira,et al.  Multivariate QSAR , 2002 .

[43]  J Berendzen,et al.  Crystal structures of myoglobin-ligand complexes at near-atomic resolution. , 1999, Biophysical journal.

[44]  H. Kubinyi QSAR: Hansch Analysis and Related Approaches: Kubinyi/QSAR , 1993 .

[45]  M. Eckert-Maksić,et al.  7-Oxanorbornene cycloadducts. X-Ray, molecular orbital and photoelectron spectroscopic study , 2000 .

[46]  Janet M. Baker,et al.  Dragon , 1989, HLT.

[47]  A. Butler,et al.  Artemisinin (qinghaosu): a new type of antimalarial drug , 1992 .

[48]  R. Frankel,et al.  Axial ligation modes in iron(III) Porphyrins. Models for the oxidized reaction states of cytochrome P-450 enzymes and the molecular structure of iron(III) protoporphyrin IX dimethyl ester p-nitrobenzenethiolate. , 1976, Journal of the American Chemical Society.

[49]  J. Karle,et al.  Correlation of the crystal structures of diastereomeric artemisinin derivatives with their proton NMR spectra in CDCl3 , 1995 .

[50]  K. Johnson High Resolution X-Ray Structures of Myoglobin-and Hemoglobin-Alkyl Isocyanide Complexes , 1994 .

[51]  R E Miller,et al.  Synthesis and antimalarial activity of some 9-substituted artemisinin derivatives. , 1993, Journal of medicinal chemistry.

[52]  Roberto Todeschini,et al.  MobyDigs: software for regression and classification models by genetic algorithms , 2003 .

[53]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[54]  M. Avery,et al.  Tricyclic analogues of artemisinin: synthesis and antimalarial activity of (+)-4,5-secoartemisinin and (–)-5-nor-4,5-secoartemisinin , 1990 .

[55]  Jean M. J. Tronchet,et al.  A QSAR Study of the Antimalarial Activity of Some Synthetic 1, 2, 4-Trioxanes , 1997, J. Chem. Inf. Comput. Sci..

[56]  S. Meshnick,et al.  Molecular modeling studies of the artemisinin (qinghaosu)-hemin interaction: docking between the antimalarial agent and its putative receptor. , 1995, Journal of molecular graphics.