Effective S-adic Symbolic Dynamical Systems

We focus in this survey on effectiveness issues for S-adic subshifts and tilings. An S-adic subshift or tiling space is a dynamical system obtained by iterating an infinite composition of substitutions, where a substitution is a rule that replaces a letter by a word (that might be multi-dimensional), or a tile by a finite union of tiles. Several notions of effectiveness exist concerning S-adic subshifts and tiling spaces, such as the computability of the sequence of iterated substitutions, or the effectiveness of the language. We compare these notions and discuss effectiveness issues concerning classical properties of the associated subshifts and tiling spaces, such as the computability of shift-invariant measures and the existence of local rules (soficity). We also focus on planar tilings.

[1]  Michel Rigo,et al.  A Decision Problem for Ultimately Periodic Sets in Nonstandard Numeration Systems , 2009, Int. J. Algebra Comput..

[2]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[3]  M. Rigo Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words , 2014 .

[4]  Robert L. Berger The undecidability of the domino problem , 1966 .

[5]  Michel Rigo,et al.  Multidimensional Generalized Automatic Sequences and Shape-symmetric Morphic Words , 2009, Discret. Math..

[6]  Thomas Fernique,et al.  No Weak Local Rules for the 4p-Fold Tilings , 2015, Discret. Comput. Geom..

[7]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[8]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .

[9]  Jeffrey Shallit,et al.  Enumeration and Decidable Properties of Automatic Sequences , 2011, Developments in Language Theory.

[10]  Thomas Fernique,et al.  When Periodicities Enforce Aperiodicity , 2013, ArXiv.

[11]  Michael Baake,et al.  A mathematical invitation , 2013 .

[12]  I. Putnam,et al.  Ordered Bratteli diagrams, dimension groups and topological dynamics , 1992 .

[13]  Tom Meyerovitch,et al.  A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.

[14]  Alexander Shen,et al.  Effective closed subshifts in 1D can be implemented in 2D , 2010, Fields of Logic and Computation.

[15]  Thang T. Q. Lê Local Rules for Quasiperiodic Tilings , 1997 .

[16]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[17]  Michel Rigo,et al.  A Decision Problem for Ultimately Periodic Sets in Non-standard Numeration Systems , 2008, MFCS.

[18]  Val'erie Berth'e,et al.  Beyond substitutive dynamical systems: S-adic expansions , 2013, 1309.3960.

[19]  N. Frank,et al.  Fusion: a general framework for hierarchical tilings of $$\mathbb{R }^d$$Rd , 2013 .

[20]  J. Socolar Weak matching rules for quasicrystals , 1990 .

[21]  Natalie M. Priebe,et al.  Towards a Characterization of Self-Similar Tilings in Terms of Derived Voronoï Tessellations , 2000 .

[22]  Benjamin Hellouin de Menibus,et al.  Computing the entropy of one-dimensional decidable subshifts , 2016, ArXiv.

[23]  Nathalie Aubrun,et al.  Multidimensional effective S-adic systems are sofic , 2011, ArXiv.

[24]  Fabien Durand,et al.  Decidability of Uniform Recurrence of Morphic Sequences , 2012, Int. J. Found. Comput. Sci..

[25]  L. Levitov Local rules for quasicrystals , 1988 .

[26]  Владимир Вячеславович Вьюгин,et al.  Эффективная сходимость по вероятности и эргодическая теорема для индивидуальных случайных последовательностей@@@Effective convergence in probability and an ergodic theorem for individual random sequences , 1997 .

[27]  Jeffrey Shallit,et al.  Decidability and Enumeration for Automatic Sequences: A Survey , 2013, CSR.

[28]  Thomas Fernique Local rule substitutions and stepped surfaces , 2007, Theor. Comput. Sci..

[29]  de Ng Dick Bruijn,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .

[30]  Mathieu Hoyrup,et al.  Effective symbolic dynamics, random points, statistical behavior, complexity and entropy , 2007, Inf. Comput..

[31]  V. V'yugin,et al.  Effective Convergence in Probability and an Ergodic Theorem forIndividual Random Sequences , 1998 .

[32]  Fabien Durand,et al.  HD0L-$ω$-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy) , 2011, ArXiv.

[33]  Nicolas Ollinger,et al.  Combinatorial Substitutions and Sofic Tilings , 2010, JAC.

[34]  Nathalie Aubrun,et al.  Simulation of Effective Subshifts by Two-dimensional Subshifts of Finite Type , 2013, ArXiv.

[35]  M. Hochman On the dynamics and recursive properties of multidimensional symbolic systems , 2009 .

[36]  Valérie Berthé Combinatorics , Automata and Number Theory , 2011 .

[37]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[38]  Michael Baake,et al.  Aperiodic Order. Vol 1. A Mathematical Invitation , 2013 .

[39]  Thomas Fernique,et al.  Local Rules for Computable Planar Tilings , 2012, AUTOMATA & JAC.

[40]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[41]  Natalie Priebe Frank,et al.  A primer of substitution tilings of the Euclidean plane , 2007, 0705.1142.

[42]  Natalie Priebe Frank,et al.  Fusion: a general framework for hierarchical tilings of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^ , 2011, Geometriae Dedicata.

[43]  Fabien Durand,et al.  Decidability of the HD0L ultimate periodicity problem , 2011, RAIRO Theor. Informatics Appl..

[44]  S. Mozes Tilings, substitution systems and dynamical systems generated by them , 1989 .

[45]  Mathieu Hoyrup,et al.  A constructive version of Birkhoff's ergodic theorem for Martin-Löf random points , 2010, Inf. Comput..

[46]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[47]  C. Goodman-Strauss MATCHING RULES AND SUBSTITUTION TILINGS , 1998 .

[48]  Jérémie Bourdon,et al.  Generating Discrete Planes with Substitutions , 2013, WORDS.