Effective S-adic Symbolic Dynamical Systems
暂无分享,去创建一个
[1] Michel Rigo,et al. A Decision Problem for Ultimately Periodic Sets in Nonstandard Numeration Systems , 2009, Int. J. Algebra Comput..
[2] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[3] M. Rigo. Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words , 2014 .
[4] Robert L. Berger. The undecidability of the domino problem , 1966 .
[5] Michel Rigo,et al. Multidimensional Generalized Automatic Sequences and Shape-symmetric Morphic Words , 2009, Discret. Math..
[6] Thomas Fernique,et al. No Weak Local Rules for the 4p-Fold Tilings , 2015, Discret. Comput. Geom..
[7] C. Michaux,et al. LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .
[8] N. D. Bruijn. Algebraic theory of Penrose''s non-periodic tilings , 1981 .
[9] Jeffrey Shallit,et al. Enumeration and Decidable Properties of Automatic Sequences , 2011, Developments in Language Theory.
[10] Thomas Fernique,et al. When Periodicities Enforce Aperiodicity , 2013, ArXiv.
[11] Michael Baake,et al. A mathematical invitation , 2013 .
[12] I. Putnam,et al. Ordered Bratteli diagrams, dimension groups and topological dynamics , 1992 .
[13] Tom Meyerovitch,et al. A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.
[14] Alexander Shen,et al. Effective closed subshifts in 1D can be implemented in 2D , 2010, Fields of Logic and Computation.
[15] Thang T. Q. Lê. Local Rules for Quasiperiodic Tilings , 1997 .
[16] Laurent Vuillon,et al. Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..
[17] Michel Rigo,et al. A Decision Problem for Ultimately Periodic Sets in Non-standard Numeration Systems , 2008, MFCS.
[18] Val'erie Berth'e,et al. Beyond substitutive dynamical systems: S-adic expansions , 2013, 1309.3960.
[19] N. Frank,et al. Fusion: a general framework for hierarchical tilings of $$\mathbb{R }^d$$Rd , 2013 .
[20] J. Socolar. Weak matching rules for quasicrystals , 1990 .
[21] Natalie M. Priebe,et al. Towards a Characterization of Self-Similar Tilings in Terms of Derived Voronoï Tessellations , 2000 .
[22] Benjamin Hellouin de Menibus,et al. Computing the entropy of one-dimensional decidable subshifts , 2016, ArXiv.
[23] Nathalie Aubrun,et al. Multidimensional effective S-adic systems are sofic , 2011, ArXiv.
[24] Fabien Durand,et al. Decidability of Uniform Recurrence of Morphic Sequences , 2012, Int. J. Found. Comput. Sci..
[25] L. Levitov. Local rules for quasicrystals , 1988 .
[26] Владимир Вячеславович Вьюгин,et al. Эффективная сходимость по вероятности и эргодическая теорема для индивидуальных случайных последовательностей@@@Effective convergence in probability and an ergodic theorem for individual random sequences , 1997 .
[27] Jeffrey Shallit,et al. Decidability and Enumeration for Automatic Sequences: A Survey , 2013, CSR.
[28] Thomas Fernique. Local rule substitutions and stepped surfaces , 2007, Theor. Comput. Sci..
[29] de Ng Dick Bruijn,et al. Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .
[30] Mathieu Hoyrup,et al. Effective symbolic dynamics, random points, statistical behavior, complexity and entropy , 2007, Inf. Comput..
[31] V. V'yugin,et al. Effective Convergence in Probability and an Ergodic Theorem forIndividual Random Sequences , 1998 .
[32] Fabien Durand,et al. HD0L-$ω$-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy) , 2011, ArXiv.
[33] Nicolas Ollinger,et al. Combinatorial Substitutions and Sofic Tilings , 2010, JAC.
[34] Nathalie Aubrun,et al. Simulation of Effective Subshifts by Two-dimensional Subshifts of Finite Type , 2013, ArXiv.
[35] M. Hochman. On the dynamics and recursive properties of multidimensional symbolic systems , 2009 .
[36] Valérie Berthé. Combinatorics , Automata and Number Theory , 2011 .
[37] P. Arnoux,et al. Pisot substitutions and Rauzy fractals , 2001 .
[38] Michael Baake,et al. Aperiodic Order. Vol 1. A Mathematical Invitation , 2013 .
[39] Thomas Fernique,et al. Local Rules for Computable Planar Tilings , 2012, AUTOMATA & JAC.
[40] Christian F. Skau,et al. Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.
[41] Natalie Priebe Frank,et al. A primer of substitution tilings of the Euclidean plane , 2007, 0705.1142.
[42] Natalie Priebe Frank,et al. Fusion: a general framework for hierarchical tilings of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^ , 2011, Geometriae Dedicata.
[43] Fabien Durand,et al. Decidability of the HD0L ultimate periodicity problem , 2011, RAIRO Theor. Informatics Appl..
[44] S. Mozes. Tilings, substitution systems and dynamical systems generated by them , 1989 .
[45] Mathieu Hoyrup,et al. A constructive version of Birkhoff's ergodic theorem for Martin-Löf random points , 2010, Inf. Comput..
[46] R. Robinson. Undecidability and nonperiodicity for tilings of the plane , 1971 .
[47] C. Goodman-Strauss. MATCHING RULES AND SUBSTITUTION TILINGS , 1998 .
[48] Jérémie Bourdon,et al. Generating Discrete Planes with Substitutions , 2013, WORDS.