Endogenous Preferences in Games with Type Indeterminate Players

The Type Indeterminacy model is a theoretical framework that uses some elements of quantum formalism to model the constructive preference perspective suggested by Kahneman and Tversky. In this paper we extend the TI-model from simple to strategic decision-making and show that TI-games open a new field of strategic interaction. We first establish an equivalence result between static games of incomplete information and static TI-games. We next develop a new solution concept for non-commuting dynamic TI-games. The updating rule captures the novelty brought about by Type Indeterminacy namely that in addition to affecting information and payoffs, the action of a player impacts on the profile of types. We provide an example showing that TI-game predictions cannot be obtained as Bayes Nash equilibrium of the corresponding classical game.

[1]  Jerome R. Busemeyer,et al.  An Exploration of Type Indeterminacy in Strategic Decision-Making , 2009, QI.

[2]  R. H. Strotz Myopia and Inconsistency in Dynamic Utility Maximization , 1955 .

[3]  S. Gächter Behavioral Game Theory , 2008, Encyclopedia of Evolutionary Psychological Science.

[4]  V. I. Danilov,et al.  Expected utility theory under non-classical uncertainty , 2010 .

[5]  Daniel Kahneman,et al.  The rational choice, values and frames , 2003 .

[6]  Ariane Lambert-Mogiliansky,et al.  Type indeterminacy - A Model of the KT(Khaneman Tversky)- Man , 2009 .

[7]  Andrei Khrennikov,et al.  A model of quantum-like decision-making with applications to psychology and cognitive science , 2007, 0711.1366.

[8]  Riccardo Franco,et al.  The inverse fallacy and quantum formalism , 2007, 0708.2972.

[9]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[10]  W. Heisenberg,et al.  La nature dans la physique contemporaine , 1962 .

[11]  Jerome R. Busemeyer,et al.  Distinguishing Quantum and Markov models of human decision-making , 2008 .

[12]  Vladimir I. Danilov,et al.  Measurable systems and behavioral sciences , 2008, Math. Soc. Sci..

[13]  J. Geanakoplos,et al.  Psychological games and sequential rationality , 1989 .

[14]  D. Fudenberg,et al.  A Dual Self Model of Impulse Control , 2004, The American economic review.

[15]  Pierfrancesco La Mura Correlated Equilibria of Classical Strategic Games with Quantum Signals , 2003, ArXiv.

[16]  Zheng Wang,et al.  Quantum Information Processing Explanation for Interactions between Inferences and Decisions , 2007, AAAI Spring Symposium: Quantum Interaction.

[17]  Colin Camerer Behavioral Game Theory , 1990 .

[18]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[19]  Jack M. Feldman,et al.  Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. , 1988 .

[20]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[21]  Riccardo Franco,et al.  The conjunction fallacy and interference effects , 2007, 0708.3948.

[22]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[23]  Michel Bitbol Théorie quantique et sciences humaines , 2009 .

[24]  Edmond Bauer,et al.  Physique Atomique et connaissance humaine , 1963 .